Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of number of diffusion-encoding directions in diffusion metrics of 5-year-olds using tract-based spatial statistical analysis

Saunavaara Jani; Merisaari Harri; Saukko Ekaterina; Lewis John D; Tuulari Jetro J; Silver Eero; Pulli Elmo P; Karlsson Linnea; Karlsson Hasse; Kumpulainen Venla; Copeland Aanni

Effect of number of diffusion-encoding directions in diffusion metrics of 5-year-olds using tract-based spatial statistical analysis

Saunavaara Jani
Merisaari Harri
Saukko Ekaterina
Lewis John D
Tuulari Jetro J
Silver Eero
Pulli Elmo P
Karlsson Linnea
Karlsson Hasse
Kumpulainen Venla
Copeland Aanni
Katso/Avaa
Eur J of Neuroscience - 2022 - Kumpulainen - Effect of number of diffusion‐encoding directions in diffusion metrics of.pdf (3.555Mb)
Lataukset: 

WILEY
doi:10.1111/ejn.15785
URI
https://doi.org/10.1111/ejn.15785
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022091258558
Tiivistelmä
Methodological aspects and effects of different imaging parameters on DTI (diffusion tensor imaging) results and their reproducibility have been recently studied comprehensively in adult populations. Although MR imaging of children's brains has become common, less interest has been focussed on researching whether adult-based optimised parameters and pre-processing protocols can be reliably applied to paediatric populations. Furthermore, DTI scalar values of preschool aged children are rarely reported. We gathered a DTI dataset from 5-year-old children (N = 49) to study the effect of the number of diffusion-encoding directions on the reliability of resultant scalar values with TBSS (tract-based spatial statistics) method. Additionally, the potential effect of within-scan head motion on DTI scalars was evaluated. Reducing the number of diffusion-encoding directions deteriorated both the accuracy and the precision of all DTI scalar values. To obtain reliable scalar values, a minimum of 18 directions for TBSS was required. For TBSS fractional anisotropy values, the intraclass correlation coefficient with two-way random-effects model (ICC[2,1]) for the subsets of 6 to 66 directions ranged between 0.136 [95%CI 0.0767;0.227] and 0.639 [0.542;0.740], whereas the corresponding values for subsets of 18 to 66 directions were 0.868 [0.815;0.913] and 0.995 [0.993;0.997]. Following the exclusion of motion-corrupted volumes, minor residual motion did not associate with the scalar values. A minimum of 18 diffusion directions is recommended to result in reliable DTI scalar results with TBSS. We suggest gathering extra directions in paediatric DTI to enable exclusion of volumes with motion artefacts and simultaneously preserve the overall data quality.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste