Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds

Schmidt Gesine; Bronze Maria Rosário; Wiczkowski Wieslaw; Gürdeniz Gözde; Rai Dilip K.; Dragsted Lars Ove; Mattivi Fulvio; da Silva Andreia Bento; Almeida Conceição; Barberán Francisco A. Tomás; Hanhineva Kati; Petrásková Lucie; González-Domínguez Raúl; Manach Claudine; Ulaszewska Marynka; Low Dorrain Y.; Abrankó Lázló; Capanoglu Esra; van Poucke Christof; Micheau Pierre; Kamiloglu Senem; Valentová Kateřina; Andres-Lacueva Cristina; Bresciani Letizia; Stanstrup Jan; Mena Pedro; Philo Mark; Rodriguez-Mateos Ana; Garcia-Villalba Rocío; Koistinen Ville Mikael; de Pascual-Teresa Sonia; Durand Stéphanie

Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds

Schmidt Gesine
Bronze Maria Rosário
Wiczkowski Wieslaw
Gürdeniz Gözde
Rai Dilip K.
Dragsted Lars Ove
Mattivi Fulvio
da Silva Andreia Bento
Almeida Conceição
Barberán Francisco A. Tomás
Hanhineva Kati
Petrásková Lucie
González-Domínguez Raúl
Manach Claudine
Ulaszewska Marynka
Low Dorrain Y.
Abrankó Lázló
Capanoglu Esra
van Poucke Christof
Micheau Pierre
Kamiloglu Senem
Valentová Kateřina
Andres-Lacueva Cristina
Bresciani Letizia
Stanstrup Jan
Mena Pedro
Philo Mark
Rodriguez-Mateos Ana
Garcia-Villalba Rocío
Koistinen Ville Mikael
de Pascual-Teresa Sonia
Durand Stéphanie
Katso/Avaa
Publisher´s pDF (2.183Mb)
Lataukset: 

Elsevier Ltd
doi:10.1016/j.foodchem.2021.129757
URI
https://doi.org/10.1016/j.foodchem.2021.129757
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048250
Tiivistelmä

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste