Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds

Low Dorrain Y.; Micheau Pierre; Koistinen Ville Mikael; Hanhineva Kati; Abrankó Lázló; Rodriguez-Mateos Ana; da Silva Andreia Bento; van Poucke Christof; Almeida Conceição; Andres-Lacueva Cristina; Rai Dilip K.; Capanoglu Esra; Barberán Francisco A. Tomás; Mattivi Fulvio; Schmidt Gesine; Gürdeniz Gözde; Valentová Kateřina; Bresciani Letizia; Petrásková Lucie; Dragsted Lars Ove; Philo Mark; Ulaszewska Marynka; Mena Pedro; González-Domínguez Raúl; Garcia-Villalba Rocío; Kamiloglu Senem; de Pascual-Teresa Sonia; Durand Stéphanie; Wiczkowski Wieslaw; Bronze Maria Rosário; Stanstrup Jan; Manach Claudine

Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds

Low Dorrain Y.
Micheau Pierre
Koistinen Ville Mikael
Hanhineva Kati
Abrankó Lázló
Rodriguez-Mateos Ana
da Silva Andreia Bento
van Poucke Christof
Almeida Conceição
Andres-Lacueva Cristina
Rai Dilip K.
Capanoglu Esra
Barberán Francisco A. Tomás
Mattivi Fulvio
Schmidt Gesine
Gürdeniz Gözde
Valentová Kateřina
Bresciani Letizia
Petrásková Lucie
Dragsted Lars Ove
Philo Mark
Ulaszewska Marynka
Mena Pedro
González-Domínguez Raúl
Garcia-Villalba Rocío
Kamiloglu Senem
de Pascual-Teresa Sonia
Durand Stéphanie
Wiczkowski Wieslaw
Bronze Maria Rosário
Stanstrup Jan
Manach Claudine
Katso/Avaa
Publisher´s pDF (2.183Mb)
Lataukset: 

Elsevier Ltd
doi:10.1016/j.foodchem.2021.129757
URI
https://doi.org/10.1016/j.foodchem.2021.129757
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048250
Tiivistelmä

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste