Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Permutation-based significance analysis reduces the type 1 error rate in bisulfite sequencing data analysis of human umbilical cord blood samples

Rasool Omid; Lietzén Niina; Grönroos Toni; Kallionpää Henna; Lund Riikka; Vähä-Mäkilä Mari; Halla-Aho Viivi; Oresic Matej; Lahesmaa Riitta; Mykkänen Juha; Nurmio Mirja; Laajala Essi; Kalim Ubaid Ullah; Toppari Jorma; Knip Mikael; Lähdesmäki Harri

Permutation-based significance analysis reduces the type 1 error rate in bisulfite sequencing data analysis of human umbilical cord blood samples

Rasool Omid
Lietzén Niina
Grönroos Toni
Kallionpää Henna
Lund Riikka
Vähä-Mäkilä Mari
Halla-Aho Viivi
Oresic Matej
Lahesmaa Riitta
Mykkänen Juha
Nurmio Mirja
Laajala Essi
Kalim Ubaid Ullah
Toppari Jorma
Knip Mikael
Lähdesmäki Harri
Katso/Avaa
Permutation based significance analysis reduces the type 1 error rate in bisulphite sequencing data analysis of human umbilical cord blood samples.pdf (12.33Mb)
Lataukset: 

TAYLOR & FRANCIS INC
doi:10.1080/15592294.2022.2044127
URI
https://doi.org/10.1080/15592294.2022.2044127
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154080
Tiivistelmä

DNA methylation patterns are largely established in-utero and might mediate the impacts of in-utero conditions on later health outcomes. Associations between perinatal DNA methylation marks and pregnancy-related variables, such as maternal age and gestational weight gain, have been earlier studied with methylation microarrays, which typically cover less than 2% of human CpG sites. To detect such associations outside these regions, we chose the bisulphite sequencing approach. We collected and curated clinical data on 200 newborn infants; whose umbilical cord blood samples were analysed with the reduced representation bisulphite sequencing (RRBS) method. A generalized linear mixed-effects model was fit for each high coverage CpG site, followed by spatial and multiple testing adjustment of P values to identify differentially methylated cytosines (DMCs) and regions (DMRs) associated with clinical variables, such as maternal age, mode of delivery, and birth weight. Type 1 error rate was then evaluated with a permutation analysis. We discovered a strong inflation of spatially adjusted P values through the permutation analysis, which we then applied for empirical type 1 error control. The inflation of P values was caused by a common method for spatial adjustment and DMR detection, implemented in tools comb-p and RADMeth. Based on empirically estimated significance thresholds, very little differential methylation was associated with any of the studied clinical variables, other than sex. With this analysis workflow, the sex-associated differentially methylated regions were highly reproducible across studies, technologies, and statistical models.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste