Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Democratising deep learning for microscopy with ZeroCostDL4Mic

Buchholz Tim-Oliver; Heilemann Mike; Henriques Ricardo; Hernández-Pérez Sara; Holden Séamus; Jacquemet Guillaume; Jones Martin L; Jug Florian; Jukkala Johanna; Karinou Eleni; Krentzel Daniel; Krull Alexander; Laine Romain F; Lerche Martina; Leterrier Christophe; Mattila Pieta K; Nehme Elias; Royer Loïc A; Shechtman Yoav; Solak Ahmet Can; Spahn Christoph; von Chamier Lucas

Democratising deep learning for microscopy with ZeroCostDL4Mic

Buchholz Tim-Oliver
Heilemann Mike
Henriques Ricardo
Hernández-Pérez Sara
Holden Séamus
Jacquemet Guillaume
Jones Martin L
Jug Florian
Jukkala Johanna
Karinou Eleni
Krentzel Daniel
Krull Alexander
Laine Romain F
Lerche Martina
Leterrier Christophe
Mattila Pieta K
Nehme Elias
Royer Loïc A
Shechtman Yoav
Solak Ahmet Can
Spahn Christoph
von Chamier Lucas
Katso/Avaa
Publisher's PDF (17.76Mb)
Lataukset: 

NATURE RESEARCH
doi:10.1038/s41467-021-22518-0
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048330
Tiivistelmä
Deep Learning (DL) methods are powerful analytical tools for microscopy and can outperform conventional image processing pipelines. Despite the enthusiasm and innovations fuelled by DL technology, the need to access powerful and compatible resources to train DL networks leads to an accessibility barrier that novice users often find difficult to overcome. Here, we present ZeroCostDL4Mic, an entry-level platform simplifying DL access by leveraging the free, cloud-based computational resources of Google Colab. ZeroCostDL4Mic allows researchers with no coding expertise to train and apply key DL networks to perform tasks including segmentation (using U-Net and StarDist), object detection (using YOLOv2), denoising (using CARE and Noise2Void), super-resolution microscopy (using Deep-STORM), and image-to-image translation (using Label-free prediction - fnet, pix2pix and CycleGAN). Importantly, we provide suitable quantitative tools for each network to evaluate model performance, allowing model optimisation. We demonstrate the application of the platform to study multiple biological processes. Deep learning methods show great promise for the analysis of microscopy images but there is currently an accessibility barrier to many users. Here the authors report a convenient entry-level deep learning platform that can be used at no cost: ZeroCostDL4Mic.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste