Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

NeuroCGRA: A CGRA with support for neural networks

Ahmed Hemani; Juha Plosila; Syed M. A. H. Jafri; Tuan Nguyen; Masoud Daneshtalab; Sergei Dytckov; Hannu Tenhunen

NeuroCGRA: A CGRA with support for neural networks

Ahmed Hemani
Juha Plosila
Syed M. A. H. Jafri
Tuan Nguyen
Masoud Daneshtalab
Sergei Dytckov
Hannu Tenhunen
Katso/Avaa
pre-print (212.3Kb)
Lataukset: 

doi:10.1109/HPCSim.2014.6903727
URI
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6903727
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042715038
Tiivistelmä

Coarse Grained Reconfigurable Architectures


(CGRAs) are emerging as enabling platforms to meet the high


performance demanded by modern embedded applications. In


many application domains (e.g. robotics and cognitive embedded


systems), the CGRAs are required to simultaneously host


processing (e.g. Audio/video acquisition) and estimation (e.g.


audio/video/image recognition) tasks. Recent works have revealed


that the efficiency and scalability of the estimation algorithms


can be significantly improved by using neural networks.


However, existing CGRAs commonly employ homogeneous


processing resources for both the tasks. To realize the best of


both the worlds (conventional processing and neural networks),


we present NeuroCGRA. NeuroCGRA allows the processing


elements and the network to dynamically morph into either


conventional CGRA or a neural network, depending on the


hosted application. We have chosen the DRRA as a vehicle to


study the feasibility and overheads of our approach. Simulation


using edge detection reveal that the neural networks can


successfully process real-time video for up to 1M pixels.


Synthesis results reveal that the proposed enhancements incur


negligible overheads (4.4% area and 9.1% power) compared to


the original DRRA cell.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste