Näytä suppeat kuvailutiedot

A Novel Approach for Manual Segmentation of the Amygdala and Hippocampus in Neonate MRI

Kristian Lidauer; Satu J. Lehtola; Niloofar Hashempour; John D. Lewis; Iiris Luukkonen; Tuire Lähdesmäki; Maria Keskinen; Harri Merisaari; Hasse Karlsson; Jetro J. Tuulari; Riitta Parkkola; Jani Saunavaara; Linnea Karlsson; Noora M. Scheinin

dc.contributor.authorKristian Lidauer
dc.contributor.authorSatu J. Lehtola
dc.contributor.authorNiloofar Hashempour
dc.contributor.authorJohn D. Lewis
dc.contributor.authorIiris Luukkonen
dc.contributor.authorTuire Lähdesmäki
dc.contributor.authorMaria Keskinen
dc.contributor.authorHarri Merisaari
dc.contributor.authorHasse Karlsson
dc.contributor.authorJetro J. Tuulari
dc.contributor.authorRiitta Parkkola
dc.contributor.authorJani Saunavaara
dc.contributor.authorLinnea Karlsson
dc.contributor.authorNoora M. Scheinin
dc.date.accessioned2022-10-28T12:44:45Z
dc.date.available2022-10-28T12:44:45Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/161752
dc.description.abstractThe gross anatomy of the infant brain at term is fairly similar to that of the adult brain, but structures are immature, and the brain undergoes rapid growth during the first 2 years of life. Neonate magnetic resonance (MR) images have different contrasts compared to adult images, and automated segmentation of brain magnetic resonance imaging (MRI) can thus be considered challenging as less software options are available. Despite this, most anatomical regions are identifiable and thus amenable to manual segmentation. In the current study, we developed a protocol for segmenting the amygdala and hippocampus in T2-weighted neonatal MR images. The participants were 31 healthy infants between 2 and 5 weeks of age. Intra-rater reliability was measured in 12 randomly selected MR images, where 6 MR images were segmented at 1-month intervals between the delineations, and another 6 MR images at 6-month intervals. The protocol was also tested by two independent raters in 20 randomly selected T2-weighted images, and finally with T1 images. Intraclass correlation coefficient (ICC) and Dice similarity coefficient (DSC) for intra-rater, inter-rater, and T1 vs. T2 comparisons were computed. Moreover, manual segmentations were compared to automated segmentations performed by iBEAT toolbox in 10 T2-weighted MR images. The intra-rater reliability was high ICC >= 0.91, DSC >= 0.89, the inter-rater reliabilities were satisfactory ICC >= 0.90, DSC >= 0.75 for hippocampus and DSC >= 0.52 for amygdalae. Segmentations for T1 vs. T2-weighted images showed high consistency ICC >= 0.90, DSC >= 0.74. The manual and iBEAT segmentations showed no agreement, DSC >= 0.39. In conclusion, there is a clear need to improve and develop the procedures for automated segmentation of infant brain MR images.
dc.language.isoen
dc.publisherFRONTIERS MEDIA SA
dc.titleA Novel Approach for Manual Segmentation of the Amygdala and Hippocampus in Neonate MRI
dc.identifier.urnURN:NBN:fi-fe2021042826359
dc.relation.volume13
dc.contributor.organizationfi=PET tutkimus|en=PET Research|
dc.contributor.organizationfi=diagnostinen radiologia|en=Diagnostic Radiology|
dc.contributor.organizationfi=kliinisen laitoksen yhteiset|en=Department of Clinical Medicine|
dc.contributor.organizationfi=psykiatria|en=Psychiatry|
dc.contributor.organizationfi=lastenpsykiatrian tutkimuskeskus|en=Lastenpsykiatrian tutkimuskeskus|
dc.contributor.organizationfi=tyks, vsshp|en=tyks, vsshp|
dc.contributor.organizationfi=lastentautioppi|en=Paediatrics and Adolescent Medicine|
dc.contributor.organizationfi=biolääketieteen laitos, yhteiset|en=Institute of Biomedicine|
dc.contributor.organization-code2607326
dc.contributor.organization-code2607303
dc.contributor.organization-code2607100
dc.contributor.organization-code2607313
dc.contributor.organization-code2607316
dc.contributor.organization-code2607300
dc.converis.publication-id42349405
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/42349405
dc.identifier.eissn1662-453X
dc.identifier.jour-issn1662-4548
dc.okm.affiliatedauthorDataimport, tyks, vsshp
dc.okm.affiliatedauthorLähdesmäki, Tuire
dc.okm.affiliatedauthorKarlsson, Hasse
dc.okm.affiliatedauthorSaunavaara, Jani
dc.okm.affiliatedauthorTuulari, Jetro
dc.okm.affiliatedauthorDataimport, 2609820 PET Tutkimus
dc.okm.affiliatedauthorScheinin, Noora
dc.okm.affiliatedauthorLehtola, Satu
dc.okm.affiliatedauthorKarlsson, Linnea
dc.okm.affiliatedauthorHashempour, Niloofar
dc.okm.affiliatedauthorLavonius, Maria
dc.okm.affiliatedauthorParkkola, Riitta
dc.okm.affiliatedauthorLuukkonen, Iiris
dc.okm.discipline3124 Neurology and psychiatryen_GB
dc.okm.discipline3124 Neurologia ja psykiatriafi_FI
dc.okm.discipline3112 Neurosciencesen_GB
dc.okm.discipline3112 Neurotieteetfi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countrySveitsifi_FI
dc.publisher.countrySwitzerlanden_GB
dc.publisher.country-codeCH
dc.relation.articlenumberARTN 1025
dc.relation.doi10.3389/fnins.2019.01025
dc.relation.ispartofjournalFrontiers in Neuroscience
dc.year.issued2019


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot