Näytä suppeat kuvailutiedot

Applying fully tensorial ICA to fMRI data

Sara Taskinen; Klaus Nordhausen; Joni Virta

dc.contributor.authorSara Taskinen
dc.contributor.authorKlaus Nordhausen
dc.contributor.authorJoni Virta
dc.date.accessioned2022-10-28T12:46:36Z
dc.date.available2022-10-28T12:46:36Z
dc.identifier.isbn978-1-5090-6714-5
dc.identifier.issn2372-7241
dc.identifier.urihttps://www.utupub.fi/handle/10024/161978
dc.description.abstract<pre>There are two aspects in functional magnetic resonance imaging (fMRI) data that make them awkward to analyse with traditional multivariate methods - high order and high dimension. The first of these refers to the tensorial nature of observations as array-valued elements instead of vectors. Although this can be circumvented by vectorizing the array, doing so simultaneously loses all the structural information in the original observations. The second aspect refers to the high dimensionality along each dimension making the concept of dimension reduction a valuable tool in the processing of fMRI data. Different methods of tensor dimension reduction are currently gaining popularity in literature, and in this paper we apply two recently proposed methods of tensorial independent component analysis to simulated task-based fMRI data. Additionally, as a preprocessing step we introduce a novel extension of PCA for tensors. The simulations show that when extracting a sufficiently large number of principal components, the tensor methods find the task signals very reliably, something the standard temporal independent component analysis (tICA) fails in.</pre>
dc.language.isoen
dc.titleApplying fully tensorial ICA to fMRI data
dc.identifier.urlhttp://ieeexplore.ieee.org/document/7846858/
dc.identifier.urnURN:NBN:fi-fe2021042716754
dc.contributor.organizationfi=tilastotiede|en=Statistics|
dc.contributor.organization-code2606103
dc.converis.publication-id20557303
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/20557303
dc.format.pagerange1
dc.format.pagerange6
dc.identifier.eisbn978-1-5090-6713-8
dc.okm.affiliatedauthorNordhausen, Klaus
dc.okm.affiliatedauthorVirta, Joni
dc.okm.discipline112 Statistics and probabilityen_GB
dc.okm.discipline112 Tilastotiedefi_FI
dc.okm.internationalcopublicationnot an international co-publication
dc.okm.internationalityInternational publication
dc.okm.typeConference proceedings article
dc.publisher.countryYhdysvallat (USA)fi_FI
dc.publisher.countryUnited Statesen_GB
dc.publisher.country-codeUS
dc.relation.conferenceIEEE Signal Processing in Medicine and Biology Symposium
dc.relation.doi10.1109/SPMB.2016.7846858
dc.title.bookProceedings of the 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
dc.year.issued2016


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot