Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data

Vassiliki Kigka; Gualtiero Pelosi; Silvia Rocchiccioli; Danilo Neglia; Antonis I. Sakellarios; Lampros K. Michalis; Juhani Knuuti; Dimitrios S. Pleouras; Dimitrios I. Fotiadis; Savvas Kyriakidis; Panagiota Tsompou

Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data

Vassiliki Kigka
Gualtiero Pelosi
Silvia Rocchiccioli
Danilo Neglia
Antonis I. Sakellarios
Lampros K. Michalis
Juhani Knuuti
Dimitrios S. Pleouras
Dimitrios I. Fotiadis
Savvas Kyriakidis
Panagiota Tsompou
Katso/Avaa
Publisher's version (1.627Mb)
Lataukset: 

NATURE RESEARCH
doi:10.1038/s41598-020-74583-y
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042820916
Tiivistelmä
Atherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention strategies. In this work, a novel computational model is developed, which is used for simulation of plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). The model is validated using the serial imaging of CTCA comparing the simulated geometries with the real follow-up arteries. Additionally, we examine the predictive capability of the model to identify regions prone of disease progression. The results presented good correlation between the simulated lumen area (P<0.0001), plaque area (P<0.0001) and plaque burden (P<0.0001) with the realistic ones. Finally, disease progression is achieved with 80% accuracy with many of the computational results being independent predictors.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste