SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf
Owen R. McBrien; Stephen J. Smartt; Ting-Wan Chen; Cosimo Inserra; James H. Gillanders; Stuart A. Sim; Anders Jerkstrand; Armin Rest; Stefano Valenti; Rupak Roy; Mariusz Gromadzki; Stefan Taubenberger; Andreas Flörs; Mark E. Huber; Ken C. Chambers; Avishay Gal-Yam; David R. Young; Matt Nicholl; Erkki Kankare; Ken W. Smith; Kate Maguire; Ilya Mandel; Simon Prentice; Ósmar Rodríguez; Jonathan Pineda Garcia; Claudia P. Gutiérrez; Lluís Galbany; Cristina Barbarino; Peter S. J. Clark; Jesper Sollerman; Shrinivas R. Kulkarni; Kishalay De; David A. H. Buckley; and Arne Rau
SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf
Owen R. McBrien
Stephen J. Smartt
Ting-Wan Chen
Cosimo Inserra
James H. Gillanders
Stuart A. Sim
Anders Jerkstrand
Armin Rest
Stefano Valenti
Rupak Roy
Mariusz Gromadzki
Stefan Taubenberger
Andreas Flörs
Mark E. Huber
Ken C. Chambers
Avishay Gal-Yam
David R. Young
Matt Nicholl
Erkki Kankare
Ken W. Smith
Kate Maguire
Ilya Mandel
Simon Prentice
Ósmar Rodríguez
Jonathan Pineda Garcia
Claudia P. Gutiérrez
Lluís Galbany
Cristina Barbarino
Peter S. J. Clark
Jesper Sollerman
Shrinivas R. Kulkarni
Kishalay De
David A. H. Buckley
and Arne Rau
IOP PUBLISHING LTD
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042821556
https://urn.fi/URN:NBN:fi-fe2021042821556
Tiivistelmä
We present SN2018kzr, the fastest declining supernova-like transient, second only to the kilonova, AT2017gfo. SN2018kzr is characterized by a peak magnitude of Mr = -17.98, a peak bolometric luminosity of ?1.4 & xfffd;& x5e0;10(43) erg s(?1), and a rapid decline rate of 0.48 & xfffd;& xfffd;0.03 mag day(?1) in the r band. The bolometric luminosity evolves too quickly to be explained by pure Ni-56 heating, necessitating the inclusion of an alternative powering source. Incorporating the spin-down of a magnetized neutron star adequately describes the lightcurve and we estimate a small ejecta mass of M-ej & xfffd;=& xfffd;0.10 & xfffd;& xfffd;0.05 M. Our spectral modeling suggests the ejecta is composed of intermediate mass elements including O, Si, and Mg and trace amounts of Fe-peak elements, which disfavors a binary neutron star merger. We discuss three explosion scenarios for SN2018kzr, given the low ejecta mass, intermediate mass element composition, and high likelihood of additional powering?the core collapse of an ultra-stripped progenitor, the accretion induced collapse (AIC) of a white dwarf, and the merger of a white dwarf and neutron star. The requirement for an alternative input energy source favors either the AIC with magnetar powering or a white dwarf?neutron star merger with energy from disk wind shocks.
Kokoelmat
- Rinnakkaistallenteet [27094]