Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

On winning shifts of marked uniform substitutions

Peltomäki Jarkko; Salo Ville

On winning shifts of marked uniform substitutions

Peltomäki Jarkko
Salo Ville
Katso/Avaa
Publisher's PDF (359.7Kb)
Lataukset: 

E D P Sciences
doi:10.1051/ita/2018007
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042821623
Tiivistelmä
The second author introduced with I. Törmä a two-player word-building game [Playing with Subshifts, Fund. Inform. 132 (2014), 131--152]. The game has a predetermined (possibly finite) choice sequence $\alpha_1$, $\alpha_2$, $\ldots$ of integers such that on round $n$ the player $A$ chooses a subset $S_n$ of size $\alpha_n$ of some fixed finite alphabet and the player $B$ picks a letter from the set $S_n$. The outcome is determined by whether the word obtained by concatenating the letters $B$ picked lies in a prescribed target set $X$ (a win for player $A$) or not (a win for player $B$). Typically, we consider $X$ to be a subshift. The winning shift $W(X)$ of a subshift $X$ is defined as the set of choice sequences for which $A$ has a winning strategy when the target set is the language of $X$. The winning shift $W(X)$ mirrors some properties of $X$. For instance, $W(X)$ and $X$ have the same entropy. Virtually nothing is known about the structure of the winning shifts of subshifts common in combinatorics on words. In this paper, we study the winning shifts of subshifts generated by marked uniform substitutions, and show that these winning shifts, viewed as subshifts, also have a substitutive structure. Particularly, we give an explicit description of the winning shift for the generalized Thue-Morse substitutions. It is known that $W(X)$ and $X$ have the same factor complexity. As an example application, we exploit this connection to give a simple derivation of the first difference and factor complexity functions of subshifts generated by marked substitutions. We describe these functions in particular detail for the generalized Thue-Morse substitutions.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste