Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge

Venäläinen Mikko S; Omberg Larsson; the Parkinson's Disease Digital Biomarker Challenge Consortium; Costante Gianluca; Görmez Yasin; Sieberts SolveigK; Goan Ethan; Rainaldi Erin; Schwab Patrick; Daneault Jean-Francois; Rad Nastaran Mohammadian; Sun Ming; Mangravite Lara M; Zhang Yuqian; Chen Aipeng; Schaff Jennifer; Vergara-Diaz Gloria; Duda Marlena; Neto Elias Chaibub; Snyder Phil; Li Dongmei; Chae Yoree; Sapienza Stefano; Brunner Daniela; Aydin Zafer; Guan Yuanfang; Shokhirev Nikolai; Espino Carlos; Pataki Bálint Ármin; Perumal Thanneer M; Wang Yuanjian; Perrin Dimitri; Elo Laura L; Dorsey E Ray; McDaniel Christian; Klén Riku; Parisi Federico; Bonato Paolo; Banda Peter; Golabchi Fatemeh Noushin; Glaab Enrico; Jonnagaddala Jitendra; Rubin Udi; Jaakkola Maria K

Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge

Venäläinen Mikko S
Omberg Larsson; the Parkinson's Disease Digital Biomarker Challenge Consortium
Costante Gianluca
Görmez Yasin
Sieberts SolveigK
Goan Ethan
Rainaldi Erin
Schwab Patrick
Daneault Jean-Francois
Rad Nastaran Mohammadian
Sun Ming
Mangravite Lara M
Zhang Yuqian
Chen Aipeng
Schaff Jennifer
Vergara-Diaz Gloria
Duda Marlena
Neto Elias Chaibub
Snyder Phil
Li Dongmei
Chae Yoree
Sapienza Stefano
Brunner Daniela
Aydin Zafer
Guan Yuanfang
Shokhirev Nikolai
Espino Carlos
Pataki Bálint Ármin
Perumal Thanneer M
Wang Yuanjian
Perrin Dimitri
Elo Laura L
Dorsey E Ray
McDaniel Christian
Klén Riku
Parisi Federico
Bonato Paolo
Banda Peter
Golabchi Fatemeh Noushin
Glaab Enrico
Jonnagaddala Jitendra
Rubin Udi
Jaakkola Maria K
Katso/Avaa
Publisher's pdf (1.524Mb)
Lataukset: 

NATURE RESEARCH
doi:10.1038/s41746-021-00414-7
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048604
Tiivistelmä
Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste