Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting spatio-temporal distributions of migratory populations using Gaussian process modelling

Laaksonen Toni; Piironen Antti; Piironen Juho

Predicting spatio-temporal distributions of migratory populations using Gaussian process modelling

Laaksonen Toni
Piironen Antti
Piironen Juho
Katso/Avaa
Journal of Applied Ecology - 2022 - Piironen - Predicting spatio‐temporal distributions of migratory populations using.pdf (11.05Mb)
Lataukset: 

Wiley-Blackwell Publishing Ltd.
doi:10.1111/1365-2664.14127
URI
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2664.14127
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154486
Tiivistelmä


1. Knowledge concerning spatio-temporal distributions of populations is a prerequisite for successful conservation and management of migratory animals. Achieving cost-effective monitoring of large-scale movements is often difficult due to lack of effective and inexpensive methods.

2. Taiga bean goose Anser fabalis fabalis and tundra bean goose A. f. rossicus offer an excellent example of a challenging management situation with harvested migratory populations. The subspecies have different conservation statuses and population trends. However, their distribution overlaps during migration to an
unknown extent, which, together with their similar appearance, has created a conservation–management dilemma.

3. Gaussian process (GP) models are widely adopted in the field of statistics and machine learning, but have seldom been applied in ecology so far. We introduce the R package gplite f or G P m odelling and use it in our case study together with birdwatcher observation data to study spatio-temporal differences between bean goose subspecies during migration in Finland in 2011–2019.

4. We demonstrate that GP modelling offers a flexible and effective tool for analysing heterogeneous data collected by citizens. The analysis reveals spatial and temporal distribution differences between the two bean goose subspecies in Finland. Taiga bean goose migrates through the entire country, whereas tundra bean goose occurs only in a small area in south-eastern Finland and migrates later than taiga bean goose.

5. Synthesis and applications. Within the studied bean goose populations, harvest can be targeted at abundant tundra bean goose by restricting hunting to south-eastern Finland and to the end of the migration period. In general, our approach combining citizen science data with GP modelling can be applied to study spatio-temporal distributions of various populations and thus help in solving challenging management situations. The introduced R package gplite can be applied not only to ecological modelling, but to a wide range of analyses in other fields of science.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste