Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Algebraic Geometric Approach to Nivat's Conjecture

Kari J; Szabados M

An Algebraic Geometric Approach to Nivat's Conjecture

Kari J
Szabados M
Katso/Avaa
Author's post-print (336.2Kb)
Lataukset: 

doi:10.1007/978-3-662-47666-6_22
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042714180
Tiivistelmä


We study multidimensional configurations (infinite words) and subshifts of low pattern complexity using tools of algebraic geometry. We express the configuration as a multivariate formal power series over integers and investigate the setup when there is a non-trivial annihilating polynomial: a non-zero polynomial whose formal product with the power series is zero. Such annihilator exists, for example, if the number of distinct patterns of some finite shape D in the configuration is at most the size vertical bar D vertical bar of the shape. This is our low pattern complexity assumption. We prove that the configuration must be a sum of periodic configurations over integers, possibly with unbounded values. As a specific application of the method we obtain an asymptotic version of the well-known Nivat's conjecture: we prove that any two-dimensional, non-periodic configuration can satisfy the low pattern complexity assumption with respect to only finitely many distinct rectangular shapes D.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste