Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-Invasive Prediction of Site-Specific Coronary Atherosclerotic Plaque Progression using Lipidomics, Blood Flow, and LDL Transport Modeling

Pelosi Gualtiero; Rocchiccioli Silvia; Tachos Nikolaos; Kigka Vassiliki; Siogkas Panagiotis; Fotiadis Dimitrios I; Knuuti Juhani; Scholte Arthur; Tsompou Panagiota; Sakellarios Antonis I; Karanasiou Georgia; Michalis Lampros K; Neglia Danilo; Clemente Alberto; Kyriakidis Savvas; Parodi Oberdan

Non-Invasive Prediction of Site-Specific Coronary Atherosclerotic Plaque Progression using Lipidomics, Blood Flow, and LDL Transport Modeling

Pelosi Gualtiero
Rocchiccioli Silvia
Tachos Nikolaos
Kigka Vassiliki
Siogkas Panagiotis
Fotiadis Dimitrios I
Knuuti Juhani
Scholte Arthur
Tsompou Panagiota
Sakellarios Antonis I
Karanasiou Georgia
Michalis Lampros K
Neglia Danilo
Clemente Alberto
Kyriakidis Savvas
Parodi Oberdan
Katso/Avaa
Publisher´s pdf (3.544Mb)
Lataukset: 

MDPI
doi:10.3390/app11051976
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048460
Tiivistelmä
Background: coronary computed tomography angiography (CCTA) is a first line non-invasive imaging modality for detection of coronary atherosclerosis. Computational modeling with lipidomics analysis can be used for prediction of coronary atherosclerotic plaque progression. Methods: 187 patients (480 vessels) with stable coronary artery disease (CAD) undergoing CCTA scan at baseline and after 6.2 +/- 1.4 years were selected from the SMARTool clinical study cohort (Clinicaltrial.gov Identifiers NCT04448691) according to a computed tomography (CT) scan image quality suitable for three-dimensional (3D) reconstruction of coronary arteries and the absence of implanted coronary stents. Clinical and biohumoral data were collected, and plasma lipidomics analysis was performed. Blood flow and low-density lipoprotein (LDL) transport were modeled using patient-specific data to estimate endothelial shear stress (ESS) and LDL accumulation based on a previously developed methodology. Additionally, non-invasive Fractional Flow Reserve (FFR) was calculated (SmartFFR). Plaque progression was defined as significant change of at least two of the morphological metrics: lumen area, plaque area, plaque burden. Results: a multi-parametric predictive model, including traditional risk factors, plasma lipids, 3D imaging parameters, and computational data demonstrated 88% accuracy to predict site-specific plaque progression, outperforming current computational models. Conclusions: Low ESS and LDL accumulation, estimated by computational modeling of CCTA imaging, can be used to predict site-specific progression of coronary atherosclerotic plaques.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste