Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression-Morphology Analysis in Breast Cancer

Hartman Johan; Wang Yinxi; Larsson Christer; Valkonen Masi; Rantalainen Mattias; Kartasalo Kimmo; Ruusuvuori Pekka; Acs Balazs; Weitz Philippe

Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression-Morphology Analysis in Breast Cancer

Hartman Johan
Wang Yinxi
Larsson Christer
Valkonen Masi
Rantalainen Mattias
Kartasalo Kimmo
Ruusuvuori Pekka
Acs Balazs
Weitz Philippe
Katso/Avaa
Publisher's version (2.123Mb)
Lataukset: 

AMER ASSOC CANCER RESEARCH
doi:10.1158/0008-5472.CAN-21-0482
URI
https://cancerres.aacrjournals.org/content/81/19/5115
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021120158437
Tiivistelmä
Molecular profiling is central in cancer precision medicine but remains costly and is based on tumor average profiles. Morphologic patterns observable in histopathology sections from tumors are determined by the underlying molecular phenotype and therefore have the potential to be exploited for prediction of molecular phenotypes. We report here the first transcriptome-wide expression-morphology (EMO) analysis in breast cancer, where individual deep convolutional neural networks were optimized and validated for prediction of mRNA expression in 17,695 genes from hematoxylin and eosin-stained whole slide images. Predicted expressions in 9,334 (52.75%) genes were significantly associated with RNA sequencing estimates. We also demonstrated successful prediction of an mRNA-based proliferation score with established clinical value. The results were validated in independent internal and external test datasets. Predicted spatial intratumor variabilities in expression were validated through spatial transcriptomics profiling. These results suggest that EMO provides a cost-efficient and scalable approach to predict both tumor average and intratumor spatial expression from histopathology images.Significance: Transcriptome-wide expression morphology deep learning analysis enables prediction of mRNA expression and proliferation markers from routine histopathology whole slide images in breast cancer.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste