Näytä suppeat kuvailutiedot

Magnetic field protects plants against high light by slowing down production of singlet oxygen

Nedbal L; Paturi P; Sarvikas P; Hakala-Yatkin M; Tyystjarvi E; Tyystjarvi T; Mattila H; Mantysaari M

dc.contributor.authorNedbal L
dc.contributor.authorPaturi P
dc.contributor.authorSarvikas P
dc.contributor.authorHakala-Yatkin M
dc.contributor.authorTyystjarvi E
dc.contributor.authorTyystjarvi T
dc.contributor.authorMattila H
dc.contributor.authorMantysaari M
dc.date.accessioned2022-10-28T13:26:53Z
dc.date.available2022-10-28T13:26:53Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/165242
dc.description.abstractRecombination of the primary radical pair of photosystem II (PSII) of photosynthesis may produce the triplet state of the primary donor of PSII. Triplet formation is potentially harmful because chlorophyll triplets can react with molecular oxygen to produce the reactive singlet oxygen (1O(2)). The yield of 1O(2) is expected to be directly proportional to the triplet yield and the triplet yield of charge recombination can be lowered with a magnetic field of 100-300 mT. In this study, we illuminated intact pumpkin leaves with strong light in the presence and absence of a magnetic field and found that the magnetic field protects against photoinhibition of PSII. The result suggests that radical pair recombination is responsible for significant part of 1O(2) production in the chloroplast. The magnetic field effect vanished if leaves were illuminated in the presence of lincomycin, an inhibitor of chloroplast protein synthesis, or if isolated thylakoid membranes were exposed to light. These data, in turn, indicate that 1O(2) produced by the recombination of the primary charge pair is not directly involved in photoinactivation of PSII but instead damages PSII by inhibiting the repair of photoinhibited PSII. We also found that an Arabidopsis thaliana mutant lacking alpha-tocopherol, a scavenger of 1O(2), is more sensitive to photoinhibition than the wild-type in the absence but not in the presence of lincomycin, confirming that the target of 1O(2) is the repair mechanism.
dc.language.isoen
dc.publisherWILEY-BLACKWELL
dc.titleMagnetic field protects plants against high light by slowing down production of singlet oxygen
dc.identifier.urnURN:NBN:fi-fe2021042714190
dc.relation.volume142
dc.contributor.organizationfi=Wihurin fysiikantutkimuslaboratorio|en=Wihuri Physical Laboratory|
dc.contributor.organizationfi=PÄÄT Biokemian laitos|en=PÄÄT Department of Biochemistry|
dc.contributor.organizationfi=PÄÄT Molekulaarinen kasvibiologia|en=PÄÄT Molecular Plant Biology|
dc.contributor.organization-code2606205
dc.contributor.organization-code2606701
dc.converis.publication-id1587734
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/1587734
dc.format.pagerange34
dc.format.pagerange26
dc.identifier.jour-issn0031-9317
dc.okm.affiliatedauthorSarvikas, Päivi
dc.okm.affiliatedauthorTyystjärvi, Esa
dc.okm.affiliatedauthorDataimport, Biokemian laitos
dc.okm.affiliatedauthorMansoniemi, Mariel
dc.okm.affiliatedauthorMattila, Heta
dc.okm.affiliatedauthorPaturi, Petriina
dc.okm.affiliatedauthorTyystjärvi, Taina
dc.okm.discipline1183 Plant biology, microbiology, virologyen_GB
dc.okm.discipline1183 Kasvibiologia, mikrobiologia, virologiafi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryBritanniafi_FI
dc.publisher.countryUnited Kingdomen_GB
dc.publisher.country-codeGB
dc.relation.doi10.1111/j.1399-3054.2011.01453.x
dc.relation.ispartofjournalPhysiologia Plantarum
dc.relation.issue1
dc.year.issued2011


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot