Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A cost-effective method for producing spatially continuous high-resolution air temperature information in urban environments

Suomi Juuso; Käyhkö Jukka; Alvi Umer

A cost-effective method for producing spatially continuous high-resolution air temperature information in urban environments

Suomi Juuso
Käyhkö Jukka
Alvi Umer
Katso/Avaa
1-s2.0-S2212095522000414-main.pdf (17.99Mb)
Lataukset: 

Elsevier
doi:10.1016/j.uclim.2022.101123
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022022320654
Tiivistelmä


Sustainable city planning requires detailed information on spatial temperature variations. Remotely sensed land surface temperature (LST) is known to differ substantially from air temperature (AT) causing misinterpretations of the ambient conditions. We demonstrate a reliable and cost-efficient method for AT modelling in urban environments using open data and few temperature observations. The study area is the city of Turku SW Finland, where we have a dense in situ AT observation network of 64 Onset Hobo temperature loggers as a reference. Landsat 8 thermal data from different seasons were used to extract pixel-based LST by employing MODIS and ASTER emissivity libraries and CORINE land cover classification. The LSTs were analysed against the in situ AT first with the correlation analysis. Except for December, the Pearson’s correlation coefficients were statistically significant (0.449–0.654, p ≤ 0.001). Seasonally adjusted linear regression models were applied to predict spatially continuous air temperatures (ATp) based on the extracted LST. Our results demonstrate that it is possible to predict urban ATs reliably - within ca. half-a-degree accuracy (MAE 0.36–0.62 °C). The prediction works best in spring, summer and autumn. It improves the capacity to produce reliable high spatial resolution AT information even if in situ observations are sparse.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste