Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling of killer T-cell and cancer cell subpopulation dynamics under immuno- and chemotherapies

Hanna Kasanen; Anni S. Halkola; Kalle Parvinen; Tero Aittokallio; Satu Mustjoki

Modelling of killer T-cell and cancer cell subpopulation dynamics under immuno- and chemotherapies

Hanna Kasanen
Anni S. Halkola
Kalle Parvinen
Tero Aittokallio
Satu Mustjoki
Katso/Avaa
Publisher's version (1.527Mb)
Lataukset: 

Elsevier
doi:10.1016/j.jtbi.2019.110136
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042822657
Tiivistelmä
Each patient's cancer has a unique molecular makeup, often comprised of distinct cancer cell subpopulations. Improved understanding of dynamic processes between cancer cell populations is therefore critical for making treatment more effective and personalized. It has been shown that immunotherapy increases the survival of melanoma patients. However, there remain critical open questions, such as timing and duration of immunotherapy and its added benefits when combined with other types of treatments. We introduce a model for the dynamics of active killer T-cells and cancer cell subpopulations. Rather than defining the cancer cell populations based on their genetic makeup alone, we consider also other, non-genetic differences that make the cell populations either sensitive or resistant to a therapy. Using the model, we make predictions of possible outcomes of the various treatment strategies in virtual melanoma patients, providing hypotheses regarding therapeutic efficacy and side-effects. It is shown, for instance, that starting immunotherapy with a denser treatment schedule may enable changing to a sparser schedule later during the treatment. Furthermore, combination of targeted and immunotherapy results in a better treatment effect, compared to mono-immunotherapy, and a stable disease can be reached with a patient-tailored combination. These results offer better understanding of the competition between T-cells and cancer cells, toward personalized immunotherapy regimens.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste