Näytä suppeat kuvailutiedot

Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

Gravesteijn Benjamin Y; Steyerberg Ewout W; CENTER-TBI collaborators; Nelson David; Lingsma Hester F; van Calster Ben; Ercole Ari; Nieboer Daan

dc.contributor.authorGravesteijn Benjamin Y
dc.contributor.authorSteyerberg Ewout W; CENTER-TBI collaborators
dc.contributor.authorNelson David
dc.contributor.authorLingsma Hester F
dc.contributor.authorvan Calster Ben
dc.contributor.authorErcole Ari
dc.contributor.authorNieboer Daan
dc.date.accessioned2022-10-28T13:38:14Z
dc.date.available2022-10-28T13:38:14Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/166366
dc.description.abstract<p>Objective</p><p>We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury.</p><p>Study Design and Setting<br /></p><p>We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, <i>n</i> = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, <i>n</i> = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified.</p><p>Results<br /></p><p>In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study.</p><p>Conclusion<br /></p><p>ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations.</p>
dc.language.isoen
dc.publisherElsevier
dc.titleMachine learning algorithms performed no better than regression models for prognostication in traumatic brain injury
dc.identifier.urnURN:NBN:fi-fe2021042822658
dc.relation.volume122
dc.contributor.organizationfi=kliiniset neurotieteet|en=Clinical Neurosciences|
dc.contributor.organizationfi=anestesiologia ja tehohoito|en=Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine|
dc.contributor.organizationfi=tyks, vsshp|en=tyks, vsshp|
dc.contributor.organization-code2607314
dc.contributor.organization-code2607301
dc.converis.publication-id49991888
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/49991888
dc.format.pagerange95
dc.format.pagerange107
dc.identifier.eissn1878-5921
dc.identifier.jour-issn0895-4356
dc.okm.affiliatedauthorTenovuo, Olli
dc.okm.affiliatedauthorTakala, Riikka
dc.okm.affiliatedauthorDataimport, tyks, vsshp
dc.okm.affiliatedauthorPosti, Jussi
dc.okm.discipline3126 Kirurgia, anestesiologia, tehohoito, radiologiafi_FI
dc.okm.discipline3126 Surgery, anesthesiology, intensive care, radiologyen_GB
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryUnited Statesen_GB
dc.publisher.countryYhdysvallat (USA)fi_FI
dc.publisher.country-codeUS
dc.relation.doi10.1016/j.jclinepi.2020.03.005
dc.relation.ispartofjournalJournal of Clinical Epidemiology
dc.year.issued2020


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot