Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated detection of pulmonary embolism from CT-angiograms using deep learning

Nyman Mikko; Huhtanen Heidi; Mohsen Tarek; Virkki Arho; Hirvonen Jussi; Karlsson Antti

Automated detection of pulmonary embolism from CT-angiograms using deep learning

Nyman Mikko
Huhtanen Heidi
Mohsen Tarek
Virkki Arho
Hirvonen Jussi
Karlsson Antti
Katso/Avaa
HuhtanenEtAl2022AutomatedDetectionOfPulmonary.pdf (2.048Mb)
Lataukset: 

BMC
doi:10.1186/s12880-022-00763-z
URI
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00763-z
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154613
Tiivistelmä

Background

The aim of this study was to develop and evaluate a deep neural network model in the automated detection of pulmonary embolism (PE) from computed tomography pulmonary angiograms (CTPAs) using only weakly labelled training data.

Methods

We developed a deep neural network model consisting of two parts: a convolutional neural network architecture called InceptionResNet V2 and a long-short term memory network to process whole CTPA stacks as sequences of slices. Two versions of the model were created using either chest X-rays (Model A) or natural images (Model B) as pre-training data. We retrospectively collected 600 CTPAs to use in training and validation and 200 CTPAs to use in testing. CTPAs were annotated only with binary labels on both stack- and slice-based levels. Performance of the models was evaluated with ROC and precision-recall curves, specificity, sensitivity, accuracy, as well as positive and negative predictive values.

Results

Both models performed well on both stack- and slice-based levels. On the stack-based level, Model A reached specificity and sensitivity of 93.5% and 86.6%, respectively, outperforming Model B slightly (specificity 90.7% and sensitivity 83.5%). However, the difference between their ROC AUC scores was not statistically significant (0.94 vs 0.91, p = 0.07).

Conclusions

We show that a deep learning model trained with a relatively small, weakly annotated dataset can achieve excellent performance results in detecting PE from CTPAs.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste