Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Stronger Types of Locating-Dominating Codes

María Luz Puertas; Ville Junnila; Tero Laihonen; Tuomo Lehtilä

On Stronger Types of Locating-Dominating Codes

María Luz Puertas
Ville Junnila
Tero Laihonen
Tuomo Lehtilä
Katso/Avaa
Publisher's pdf (297.6Kb)
Lataukset: 

DISCRETE MATHEMATICS THEORETICAL COMPUTER SCIENCE
URI
https://dmtcs.episciences.org/5344
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042823508
Tiivistelmä
Locating-dominating codes in a graph find their application in sensor networks and have been studied extensively over the years. A locating-dominating code can locate one object in a sensor network, but if there is more than one object, it may lead to false conclusions. In this paper, we consider stronger types of locating-dominating codes which can locate one object and detect if there are multiple objects. We study the properties of these codes and provide bounds on the smallest possible size of these codes, for example, with the aid of the Dilworth number and Sperner families Moreover, these codes are studied in trees and Cartesian products of graphs. We also give the complete realization theorems for the coexistence of the smallest possible size of these codes and the optimal locating-dominating codes in a graph.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste