Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combining supervised and unsupervised named entity recognition to detect psychosocial risk factors in occupational health checks

Uronen Leena; Hakala Kai; Hartiala Jaakko; Moen Hans; Salanterä Sanna

Combining supervised and unsupervised named entity recognition to detect psychosocial risk factors in occupational health checks

Uronen Leena
Hakala Kai
Hartiala Jaakko
Moen Hans
Salanterä Sanna
Katso/Avaa
1-s2.0-S1386505622000090-main.pdf (1.698Mb)
Lataukset: 

Elsevier
doi:10.1016/j.ijmedinf.2022.104695
URI
https://doi.org/10.1016/j.ijmedinf.2022.104695
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154671
Tiivistelmä

Introduction: In occupational health checks the information about psychosocial risk factors, which influence work ability, is documented in free text. Early detection of psychosocial risk factors helps occupational health care to choose the right and targeted interventions to maintain work capacity. In this study the aim was to evaluate if we can automate the recognition of these psychosocial risk factors in occupational health check electronic records with natural language processing (NLP).

Materials and methods: We compared supervised and unsupervised named entity recognition (NER) to detect psychosocial risk factors from health checks’ documentation. Occupational health nurses have done these records.

Results: Both methods found over 60% of psychosocial risk factors from the records. However, the combination of BERT-NER (supervised NER) and QExp (query expansion/paraphrasing) seems to be more suitable. In both methods the most (correct) risk factors were found in the work environment and equipment category.

Conclusion: This study showed that it was possible to detect risk factors automatically from free-text documentation of health checks. It is possible to develop a text mining tool to automate the detection of psychosocial risk factors at an early stage

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste