Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum Key Distribution: Modeling and Simulation through BB84 Protocol Using Python3

Isoaho Jouni; Adu-Kyere Akwasi; Nigussie Ethiopia

Quantum Key Distribution: Modeling and Simulation through BB84 Protocol Using Python3

Isoaho Jouni
Adu-Kyere Akwasi
Nigussie Ethiopia
Katso/Avaa
sensors-22-06284.pdf (2.507Mb)
Lataukset: 

MDPI
doi:10.3390/s22166284
URI
https://www.mdpi.com/1424-8220/22/16/6284
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022102463134
Tiivistelmä

Autonomous “Things” is becoming the future trend as the role, and responsibility of IoT keep diversifying. Its applicability and deployment need to re-stand technological advancement. The versatile security interaction between IoTs in human-to-machine and machine-to-machine must also endure mathematical and computational cryptographic attack intricacies. Quantum cryptography uses the laws of quantum mechanics to generate a secure key by manipulating light properties for secure end-to-end communication. We present a proof-of-principle via a communication architecture model and implementation to simulate these laws of nature. The model relies on the BB84 quantum key distribution (QKD) protocol with two scenarios, without and with the presence of an eavesdropper via the interception-resend attack model from a theoretical, methodological, and practical perspective. The proposed simulation initiates communication over a quantum channel for polarized photon transmission after a pre-agreed configuration over a Classic Channel with parameters. Simulation implementation results confirm that the presence of an eavesdropper is detectable during key generation due to Heisenberg’s uncertainty and no-cloning principles. An eavesdropper has a 0.5 probability of guessing transmission qubit and 0.25 for the polarization state. During simulation re-iterations, a base-mismatch process discarded about 50 percent of the total initial key bits with an Error threshold of 0.11 percent.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste