Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comprehensive Analysis of Cardiogenic Vibrations for Automated Detection of Atrial Fibrillation Using Smartphone Mechanocardiograms

Juhani Airaksinen; Olli Lahdenoja; Eero Lehtonen; Mikko Pänkäälä; Jussi Jaakkola; Tuija Vasankari; Tero Koivisto; Saeed Mehrang; Tero Hurnanen; Samuli Jaakkola; Matti Kaisti; Timo Knuutila; Mojtaba Jafari Tadi; Tuomas Kiviniemi

Comprehensive Analysis of Cardiogenic Vibrations for Automated Detection of Atrial Fibrillation Using Smartphone Mechanocardiograms

Juhani Airaksinen
Olli Lahdenoja
Eero Lehtonen
Mikko Pänkäälä
Jussi Jaakkola
Tuija Vasankari
Tero Koivisto
Saeed Mehrang
Tero Hurnanen
Samuli Jaakkola
Matti Kaisti
Timo Knuutila
Mojtaba Jafari Tadi
Tuomas Kiviniemi
Katso/Avaa
Publisher's PDF (2.159Mb)
Lataukset: 

IEEE
doi:10.1109/JSEN.2018.2882874
URI
https://ieeexplore.ieee.org/abstract/document/8543838
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042720392
Tiivistelmä

Atrial fibrillation (AFib) is the most common sustained heart arrhythmia and is characterized by irregular and excessively frequent ventricular contractions. Early diagnosis of AFib is a key step in the prevention of stroke and heart failure. In this study, we present a comprehensive time-frequency pattern analysis approach for automated detection of AFib from smartphone-derived seismocardiography (SCG) and gyrocardiography (GCG) signals. We sought to assess the diagnostic performance of a smartphone mechanocardiogram (MCG) by considering joint SCG-GCG recordings from 435 subjects including 190 AFib and 245 sinus rhythm (SR) cases. A fully automated AFib detection algorithm consisting of various signal processing and multidisciplinary feature engineering techniques was developed and evaluated through a large set of cross-validation (CV) data including 300 (AFib=150) cardiac patients. The trained model was further tested on an unseen set of recordings including 135 (AFib=40) subjects considered as cross-database (CD). The experimental results showed accuracy, sensitivity, and specificity of approximately 97%, 99%, and 95% for the CV study and up to 95%, 93%, and 97% for the CD test, respectively. The F1 scores were 97% and 96% for the CV and CD, respectively. A positive predictive value of approximately 95% and 92% was obtained respectively for the validation and test sets suggesting high reproducibility and repeatability for mobile AFib detection. Moreover, the kappa coefficient of the method was 0.94 indicating a near-perfect agreement in rhythm classification between the smartphone algorithm and visual interpretation of telemetry recordings. The results support the feasibility of self-monitoring via easy-to-use and accessible MCGs.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste