Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel Discrete Wavelet-Concatenated Mesh Tree and ternary chess pattern based ECG signal recognition method

Tuncer Turker; Subasi Abdulhamit; Plawiak Pawel; Dogan Sengul

A novel Discrete Wavelet-Concatenated Mesh Tree and ternary chess pattern based ECG signal recognition method

Tuncer Turker
Subasi Abdulhamit
Plawiak Pawel
Dogan Sengul
Katso/Avaa
1-s2.0-S1746809421009289-main.pdf (2.109Mb)
Lataukset: 

Elsevier Ltd
doi:10.1016/j.bspc.2021.103331
URI
https://www.sciencedirect.com/science/article/pii/S1746809421009289
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154759
Tiivistelmä

Electrocardiogram (ECG) signals have been widely used to diagnose heart arrhythmias. In order to detect these arrhythmias using ECG signals, many machine learning methods have been presented. In this article, a novel Discrete Wavelet Concatenated Mesh Tree (DW-CMT) and ternary chess pattern (TCP) based ECG signal recognition method is presented. The proposed ECG signal recognition method consists of 4 main steps: pre-processing using DW-CMT, feature extraction using TCP, feature selection, and classification. In the pre-processing step, 15 sub-bands of an ECG signals are generated. By using TCP, features are extracted from the sub-bands of the ECG signal. The extracted features are concatenated in the feature concatenation phase. In order to select distinctive features, the neighborhood component analysis (NCA) based feature selection method is used and the 128 most distinctive features are selected. In order to demonstrate the strength of the extracted and selected features, conventional classifiers which are linear discriminant analysis (LDA), k-nearest neighbor (k-NN), support vector machine (SVM) are used. To test the success of the proposed method, the MIT-BIH dataset and St. Petersburg dataset were used. The 96.60% maximum classification accuracy is achieved for the MIT-BIH dataset using k-NN and 97.80% accuracy is achieved using SVM for St. Petersburg ECG dataset. The obtained results clearly prove the success of the proposed method.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste