Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions

Roshchupkin Gennady; Zomer Aldert L; Pasic Lejla; Lahti Leo; Vlachakis Dimitrios; Desai Mahesh S; Aydemir Onder; Marques Cláudia; Claesson Marcus J; on behalf of ML4Microbiome; May Patrick; Nedyalkova Miroslava; Saez-Rodriguez Julio; Przymus Piotr; Mason Michael; Elbere Ilze; Vilne Baiba; Zeller Georg; Truica Ciprian-Octavian; Pongor Sándor; Suharoschi Ramona; Falquet Laurent; Pio Gianvito; Bakir-Gungor Burcu; Sampri Alexia; Gundogdu Aycan; Hron Karel; D'Elia Domenica; Adilovic Muhamed; Marcos-Zambrano Laura Judith; Yilmaz Ercument; Shigdel Rajesh; Klammsteiner Thomas; Stres Blaz; Pau Enrico Carrillo De; Lopes Marta B; Moreno-Indias Isabel; Promponas Vasilis J; Gómez-Cabrero D; Truu Jaak

Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions

Roshchupkin Gennady
Zomer Aldert L
Pasic Lejla
Lahti Leo
Vlachakis Dimitrios
Desai Mahesh S
Aydemir Onder
Marques Cláudia
Claesson Marcus J; on behalf of ML4Microbiome
May Patrick
Nedyalkova Miroslava
Saez-Rodriguez Julio
Przymus Piotr
Mason Michael
Elbere Ilze
Vilne Baiba
Zeller Georg
Truica Ciprian-Octavian
Pongor Sándor
Suharoschi Ramona
Falquet Laurent
Pio Gianvito
Bakir-Gungor Burcu
Sampri Alexia
Gundogdu Aycan
Hron Karel
D'Elia Domenica
Adilovic Muhamed
Marcos-Zambrano Laura Judith
Yilmaz Ercument
Shigdel Rajesh
Klammsteiner Thomas
Stres Blaz
Pau Enrico Carrillo De
Lopes Marta B
Moreno-Indias Isabel
Promponas Vasilis J
Gómez-Cabrero D
Truu Jaak
Katso/Avaa
Publisher's PDF (956.3Kb)
Lataukset: 

FRONTIERS MEDIA SA
doi:10.3389/fmicb.2021.635781
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021093048880
Tiivistelmä
The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 "ML4Microbiome" that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste