Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy-efficient Post-failure Reconfiguration of Swarms of Unmanned Aerial Vehicles

Haghbayan Hashem; Plosila Juha; Tahir Anam; Böling Jari

Energy-efficient Post-failure Reconfiguration of Swarms of Unmanned Aerial Vehicles

Haghbayan Hashem
Plosila Juha
Tahir Anam
Böling Jari
Katso/Avaa
Energy-efficient_Post-failure_Reconfiguration_of_Swarms_of_Unmanned_Aerial_Vehicles.pdf (2.125Mb)
Lataukset: 

Institute of Electrical and Electronics Engineers
doi:10.1109/ACCESS.2022.3181244
URI
https://ieeexplore.ieee.org/document/9791400
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022081154800
Tiivistelmä

In this paper, the reconfiguration of swarms of unmanned aerial vehicles after simultaneous failures of multiple nodes is considered. The objectives of the post-failure reconfiguration are to provide collision avoidance and smooth energy-efficient movement. To incorporate such a mechanism, three different failure recovery algorithms are proposed namely thin-plate spline, distance- and time-optimal algorithms. These methods are tested on six swarms, with two variations on failing nodes for each swarm. Simulation results of reconfiguration show that the execution of such algorithms maintains the desired formations with respect to avoiding collisions at run-time. Also, the results show the effectiveness concerning the distance travelled, kinetic energy, and energy efficiency. As expected, the distance-optimal algorithm gives the shortest movements, and the time-optimal algorithm gives the most energy-efficient movements. The thinplate spline is also found to be energy-efficient and has less computational cost than the other two proposed methods. Despite the suggested heuristics, these are combinatorial in nature and might be hard to use in practice. Furthermore, the use of the regularization parameter λ in thin-plate spline is also investigated, and it is found that too large values on λ can lead to incorrect locations, including multiple nodes on the same location. In fact, it is found that using λ = 0 worked well in all cases.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste