Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regularity Theory for Non-autonomous Partial Differential Equations Without Uhlenbeck Structure

Hästö Peter; Ok Jihoon

Regularity Theory for Non-autonomous Partial Differential Equations Without Uhlenbeck Structure

Hästö Peter
Ok Jihoon
Katso/Avaa
s00205-022-01807-y.pdf (552.0Kb)
Lataukset: 

SPRINGER
doi:10.1007/s00205-022-01807-y
URI
https://doi.org/10.1007/s00205-022-01807-y
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022091258774
Tiivistelmä

We establish maximal local regularity results of weak solutions or local minimizers of div A(x, Du) = 0 and min(u) integral(Omega) F(x, Du)dx,providing new ellipticity and continuity assumptions on A or F with general (p, q)-growth. Optimal regularity theory for the above non-autonomous problems is a long-standing issue; the classical approach by Giaquinta and Giusti involves assuming that the nonlinearity F satisfies a structure condition. This means that the growth and ellipticity conditions depend on a given special function, such as t(p), phi (t), t(p(x)), t(p) +a(x)t(q), and not only F but also the given function is assumed to satisfy suitable continuity conditions. Hence these regularity conditions depend on given special functions. In this paper we study the problem without recourse to, special function structure and without assuming Uhlenbeck structure. We introduce a new ellipticity condition using A or F only, which entails that the function is quasi-isotropic, i.e. it may depend on the direction, but only up to a multiplicative constant. Moreover, we formulate the continuity condition on A or F without specific structure and without direct restriction on the ratio q/p of the parameters from the (p, q)-growth condition. We establish local C-1,C-alpha-regularity for some alpha is an element of (0, 1) and C-alpha-regularity for any alpha is an element of (0, 1) of weak solutions and local minimizers. Previously known, essentially optimal, regularity results are included as special cases.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste