Näytä suppeat kuvailutiedot

Machine learning in interpretation of electronic core-level spectra

Niskanen Johannes; Sahle Christoph; Kettunen J. Antti; Vladyka Anton

dc.contributor.authorNiskanen Johannes
dc.contributor.authorSahle Christoph
dc.contributor.authorKettunen J. Antti
dc.contributor.authorVladyka Anton
dc.date.accessioned2022-10-28T14:13:41Z
dc.date.available2022-10-28T14:13:41Z
dc.identifier.urihttps://www.utupub.fi/handle/10024/170125
dc.description.abstract<p>Electronic transitions involving core-level orbitals offer a localized, atomic-site and element specific peek window into statistical systems such as molecular liquids. Although formally understood, the complex relation between structure and spectrum -- and the effect of statistical averaging of highly differing spectra of individual structures -- render the analysis of an ensemble-averaged core-level spectrum complicated. We explore the applicability of machine learning for molecular structure -- core-level spectrum interpretation. We focus on the electronic Hamiltonian using the \ce{H2O} molecule in the classical-nuclei approximation as our test system. For a systematic view we studied both predicting structures from spectra and, vice versa, spectra from structures, using polynomial approaches and neural networks. We find predicting spectra easier than predicting structures, where a tighter grid (even unphysical) of the spectrum improves prediction, possibly inviting for over-interpretation of the model. The accuracy of the structure prediction worsens when moving outwards from the center of mass of the training set in the structural parameter space, which can not be overcome by model selection based on generalizability.<br></p>
dc.language.isoen
dc.publisherElsevier
dc.titleMachine learning in interpretation of electronic core-level spectra
dc.identifier.urlhttps://doi.org/10.1016/j.elspec.2022.147243
dc.identifier.urnURN:NBN:fi-fe2022091258778
dc.relation.volume260
dc.contributor.organizationfi=materiaalitutkimuksen laboratorio|en=Materials Research Laboratory|
dc.contributor.organization-code2606706
dc.converis.publication-id176024642
dc.converis.urlhttps://research.utu.fi/converis/portal/Publication/176024642
dc.identifier.eissn1873-2526
dc.identifier.jour-issn0368-2048
dc.okm.affiliatedauthorNiskanen, Johannes
dc.okm.affiliatedauthorVladyka, Anton
dc.okm.discipline114 Physical sciencesen_GB
dc.okm.discipline116 Chemical sciencesen_GB
dc.okm.discipline116 Kemiafi_FI
dc.okm.discipline114 Fysiikkafi_FI
dc.okm.internationalcopublicationinternational co-publication
dc.okm.internationalityInternational publication
dc.okm.typeJournal article
dc.publisher.countryNetherlandsen_GB
dc.publisher.countryAlankomaatfi_FI
dc.publisher.country-codeNL
dc.relation.articlenumber147243
dc.relation.doi10.1016/j.elspec.2022.147243
dc.relation.ispartofjournalJournal of Electron Spectroscopy and Related Phenomena
dc.relation.issue147243
dc.year.issued2022


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot