Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational and proof complexity of partial string avoidability

Vsevolod Oparin; Dimitry Itsykson; Alexander Okhotin

Computational and proof complexity of partial string avoidability

Vsevolod Oparin
Dimitry Itsykson
Alexander Okhotin
Katso/Avaa
Publisher's PDF (433.4Kb)
Lataukset: 

doi:10.4230/LIPIcs.MFCS.2016.51
URI
http://drops.dagstuhl.de/opus/volltexte/2016/6463/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042718732
Tiivistelmä

The partial string avoidability problem, also known as partial word avoidability, is stated as follows: given a finite set of strings with possible ``holes'' (undefined symbols), determine whether there exists any two-sided infinite string containing no substrings from this set, assuming that a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this paper establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted as a version of conjunctive normal form (CNF) satisfiability problem (SAT), with each clause having infinitely many shifted variants. Non-satisfiability of these formulas can be proved using variants of classical propositional proof systems, augmented with derivation rules for shifting constraints (such as clauses, inequalities, polynomials, etc). Two results on their proof complexity are established. First, there is a particular formula that has a short refutation in Resolution with shift, but requires classical proofs of exponential size (Resolution, Cutting Plane, Polynomial Calculus, etc.). At the same time, exponential lower bounds for shifted versions of classical proof systems are established.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste