Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive risk prediction system with incremental and transfer learning

Sahota Daljit Singh; Airola Antti; Lo Tsz-kin; Leung Wing-cheong; Koivu Aki; Sairanen Mikko; Pahikkala Tapio

Adaptive risk prediction system with incremental and transfer learning

Sahota Daljit Singh
Airola Antti
Lo Tsz-kin
Leung Wing-cheong
Koivu Aki
Sairanen Mikko
Pahikkala Tapio
Katso/Avaa
Publisher's PDF (2.673Mb)
Lataukset: 

PERGAMON-ELSEVIER SCIENCE LTD
doi:10.1016/j.compbiomed.2021.104886
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021102952989
Tiivistelmä


Currently, popular methods for prenatal risk assessment of fetal aneuploidies are based on multivariate proba-bilistic modelling, that are built on decades of scientific research and large-scale multi-center clinical studies. These static models that are deployed to screening labs are rarely updated or adapted to local population characteristics. In this article, we propose an adaptive risk prediction system or ARPS, which considers these changing characteristics and automatically deploys updated risk models.

8 years of real-life Down syndrome screening data was used to firstly develop a distribution shift detection method that captures significant changes in the patient population and secondly a probabilistic risk modelling system that adapts to new data when these changes are detected. Various candidate systems that utilize transfer-and incremental learning that implement different levels of plasticity were tested.

Distribution shift detection using a windowed approach provides a computationally less expensive alternative to fitting models at every data block step while not sacrificing performance. This was possible when utilizing transfer learning. Deploying an ARPS to a lab requires careful consideration of the parameters regarding the distribution shift detection and model updating, as they are affected by lab throughput and the incidence of the screened rare disorder. When this is done, ARPS could be also utilized for other population screening problems.

We demonstrate with a large real-life dataset that our best performing novel Incremental-Learning-Population-to-Population-Transfer-Learning design can achieve on par prediction performance without human intervention, when compared to a deployed risk screening algorithm that has been manually updated over several years.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste