Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying bias and uncertainty in historical data collections with probabilistic programming

Mikko Tolonen; Leo Lahti; Eetu Mäkelä

Quantifying bias and uncertainty in historical data collections with probabilistic programming

Mikko Tolonen
Leo Lahti
Eetu Mäkelä
Katso/Avaa
Publisher's PDF (306.2Kb)
Lataukset: 

URI
http://ceur-ws.org/Vol-2723/short46.pdf
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042826733
Tiivistelmä

The enhanced access to ever-expanding digital data collections
and open computational methods have led to the emergence of new
research lines within the humanities and social sciences, bringing in new quantitative evidence and insights. Any data interpretation depends critically on understanding of the scope and limitations in data collection,
as well as on reliable downstream analysis. Quantitative analysis can
complement qualitative research by providing access to overlooked
information that is accessible only through systematic discovery and
analysis of latent patterns underlying the available data collections. Probabilistic programming is an expanding paradigm in machine learning that provides new statistical tools for intuitive interpretation of complex data sets. This new paradigm stems from Bayesian analysis and emphasizes explicit modeling of the data generating processes and associated uncertainties. Despite its remarkable application potential, probabilistic programming has so far received little attention in computational humanities. We use a brief case study in computational history to demonstrate how probabilistic programming can be incorporated in reproducible data science workflows in order to detect and quantify bias in a widely studied historical text collection, the Eighteenth Century Collections Online.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste