Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robustness-Driven Hybrid Descriptor for Noise-Deterrent Texture Classification

Mansoor Shaukat Khan; Yasar Amin; Muhammad Ali Riaz; Fawad; Jonathan Loo; Muhammad Jamil Khan; Humayun Shahid; Ayesha Saeed; Hannu Tenhunen

Robustness-Driven Hybrid Descriptor for Noise-Deterrent Texture Classification

Mansoor Shaukat Khan
Yasar Amin
Muhammad Ali Riaz
Fawad
Jonathan Loo
Muhammad Jamil Khan
Humayun Shahid
Ayesha Saeed
Hannu Tenhunen
Katso/Avaa
Publisher's PDF (8.258Mb)
Lataukset: 

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
doi:10.1109/ACCESS.2019.2932687
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042826945
Tiivistelmä
A robustness-driven hybrid descriptor (RDHD) for noise-deterrent texture classification is presented in this paper. This paper offers the ability to categorize a variety of textures under challenging image acquisition conditions. An image is initially resolved into its low-frequency components by applying wavelet decomposition. The resulting low-frequency components are further processed for feature extraction using completed joint-scale local binary patterns (CJLBP). Moreover, a second feature set is obtained by computing the low order derivatives of the original sample. The evaluated feature sets are integrated to get a final feature vector representation. The texture-discriminating performance of the hybrid descriptor is analyzed using renowned datasets: Outex original, Outex extended, and KTH-TIPS. The experimental results demonstrate a stable and robust performance of the descriptor under a variety of noisy conditions. An accuracy of 95.86%, 32.52%, and 88.74% at noise variance of 0.025 is achieved for the given datasets, respectively. A comparison between performance parameters of the proposed paper with its parent descriptors and recently published paper is also presented.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste