Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust data-driven identification of risk factors and their interactions: A simulation and a study of parental and demographic risk factors for schizophrenia

Sourander A; Brown AS; McKeague IW; Gyllenberg D

Robust data-driven identification of risk factors and their interactions: A simulation and a study of parental and demographic risk factors for schizophrenia

Sourander A
Brown AS
McKeague IW
Gyllenberg D
Katso/Avaa
Publisher´s PDF (1.527Mb)
Lataukset: 

WILEY
doi:10.1002/mpr.1834
URI
https://doi.org/10.1002/mpr.1834
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042827409
Tiivistelmä
Objectives Few interactions between risk factors for schizophrenia have been replicated, but fitting all such interactions is difficult due to high-dimensionality. Our aims are to examine significant main and interaction effects for schizophrenia and the performance of our approach using simulated data.Methods We apply the machine learning technique elastic net to a high-dimensional logistic regression model to produce a sparse set of predictors, and then assess the significance of odds ratios (OR) with Bonferroni-corrected p-values and confidence intervals (CI). We introduce a simulation model that resembles a Finnish nested case-control study of schizophrenia which uses national registers to identify cases (n = 1,468) and controls (n = 2,975). The predictors include nine sociodemographic factors and all interactions (31 predictors).Results In the simulation, interactions with OR = 3 and prevalence = 4% were identified with <5% false positive rate and >= 80% power. None of the studied interactions were significantly associated with schizophrenia, but main effects of parental psychosis (OR = 5.2, CI 2.9-9.7; p < .001), urbanicity (1.3, 1.1-1.7; p = .001), and paternal age >= 35 (1.3, 1.004-1.6; p = .04) were significant.Conclusions We have provided an analytic pipeline for data-driven identification of main and interaction effects in case-control data. We identified highly replicated main effects for schizophrenia, but no interactions.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste