Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

On abelian saturated infinite words

Aleksi Saarela; Juhani Karhumäki; Sergey Avgustinovich; Julien Cassaigne; Svetlana Puzynina

On abelian saturated infinite words

Aleksi Saarela
Juhani Karhumäki
Sergey Avgustinovich
Julien Cassaigne
Svetlana Puzynina
Katso/Avaa
rich.pdf (279.1Kb)
Lataukset: 

Elsevier
doi:10.1016/j.tcs.2018.05.013
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042719300
Tiivistelmä

Let f:Z+→R be an increasing function. We say that an infinite word w is abelian f(n)-saturated if each factor of length n contains Θ(f(n)) abelian nonequivalent factors. We show that binary infinite words cannot be abelian n2-saturated, but, for any ε>0, they can be abelian n2−ε-saturated. There is also a sequence of finite words (wn), with |wn|=n, such that each wn contains at least Cn2 abelian nonequivalent factors for some constant C>0. We also consider saturated words and their connection to palindromic richness in the case of equality and k-abelian equivalence.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste