Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classifying Web Exploits with Topic Modeling

Jukka Ruohonen

Classifying Web Exploits with Topic Modeling

Jukka Ruohonen
Katso/Avaa
Post-print (final draft) (83.47Kb)
Lataukset: 

doi:10.1109/DEXA.2017.35
URI
http://ieeexplore.ieee.org/document/8049693/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042717252
Tiivistelmä

This short empirical paper investigates how well topic modeling and database meta-data characteristics can classify web and other proof-of-concept (PoC) exploits for publicly disclosed software vulnerabilities. By using a dataset comprised of over 36 thousand PoC exploits, near a 0.9 accuracy rate is obtained in the empirical experiment. Text mining and topic modeling are a significant boost factor behind this classification performance. In addition to these empirical results, the paper contributes to the research tradition of enhancing software vulnerability information with text mining, providing also a few scholarly observations about the potential for semi-automatic classification of exploits in the existing tracking infrastructures.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste