dc.contributor.author | Numminen Riikka | |
dc.contributor.author | Airola Antti | |
dc.contributor.author | Montoya Perez Ileana | |
dc.contributor.author | Pahikkala Tapio | |
dc.contributor.author | Jambor Ivan | |
dc.date.accessioned | 2022-11-29T14:56:00Z | |
dc.date.available | 2022-11-29T14:56:00Z | |
dc.identifier.uri | https://www.utupub.fi/handle/10024/173118 | |
dc.description.abstract | Receiver Operating Characteristic (ROC) curve analysis and area under the ROC curve (AUC) are commonly used performance measures in diagnostic systems. In this work, we assume a setting, where a classifier is inferred from multivariate data to predict the diagnostic outcome for new cases. Cross-validation is a resampling method for estimating the prediction performance of a classifier on data not used for inferring it. Tournament leave-pair-out (TLPO) cross-validation has been shown to be better than other resampling methods at producing a ranking of data that can be used for estimating the ROC curves and areas under them. However, the time complexity of TLPOCV, O(n(2)), means that it is impractical in many applications. In this article, a method called quicksort leave-pair-out cross-validation (QLPOCV) is presented in order to decrease the time complexity of obtaining a reliable ranking of data to O(n log n). The proposed method is compared with existing ones in an experimental study, demonstrating that in terms of ROC curves and AUC values QLPOCV produces as accurate performance estimation as TLPOCV, outperforming both k-fold and leave-one-out cross-validation. | |
dc.language.iso | en | |
dc.publisher | SPRINGER HEIDELBERG | |
dc.title | Quicksort leave-pair-out cross-validation for ROC curve analysis | |
dc.identifier.url | https://doi.org/10.1007/s00180-022-01288-3 | |
dc.identifier.urn | URN:NBN:fi-fe2022110164030 | |
dc.contributor.organization | fi=terveysteknologia|en=Terveysteknologia| | |
dc.contributor.organization | fi=data-analytiikka|en=Data-analytiikka| | |
dc.contributor.organization | fi=tyks, vsshp|en=tyks, vsshp| | |
dc.contributor.organization | fi=diagnostinen radiologia|en=Diagnostic Radiology| | |
dc.contributor.organization-code | 2610303 | |
dc.contributor.organization-code | 2607303 | |
dc.contributor.organization-code | 2610301 | |
dc.converis.publication-id | 176696554 | |
dc.converis.url | https://research.utu.fi/converis/portal/Publication/176696554 | |
dc.identifier.eissn | 1613-9658 | |
dc.identifier.jour-issn | 0943-4062 | |
dc.okm.affiliatedauthor | Dataimport, tyks, vsshp | |
dc.okm.affiliatedauthor | Montoya Perez, Ileana | |
dc.okm.affiliatedauthor | Pahikkala, Tapio | |
dc.okm.affiliatedauthor | Airola, Antti | |
dc.okm.affiliatedauthor | Numminen, Riikka | |
dc.okm.affiliatedauthor | Jambor, Ivan | |
dc.okm.discipline | 113 Computer and information sciences | en_GB |
dc.okm.discipline | 113 Tietojenkäsittely ja informaatiotieteet | fi_FI |
dc.okm.discipline | 112 Statistics and probability | en_GB |
dc.okm.discipline | 112 Tilastotiede | fi_FI |
dc.okm.internationalcopublication | not an international co-publication | |
dc.okm.internationality | International publication | |
dc.okm.type | Journal article | |
dc.publisher.country | Germany | en_GB |
dc.publisher.country | Saksa | fi_FI |
dc.publisher.country-code | DE | |
dc.relation.doi | 10.1007/s00180-022-01288-3 | |
dc.relation.ispartofjournal | Computational Statistics | |
dc.year.issued | 2022 | |