Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection

Kirjavainen Johanna; Mäkinen Saku J; Valtonen Laura

Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection

Kirjavainen Johanna
Mäkinen Saku J
Valtonen Laura
Katso/Avaa
10944281221124947.pdf (1.111Mb)
Lataukset: 

Sage Publications
doi:10.1177/10944281221124947
URI
https://journals.sagepub.com/doi/10.1177/10944281221124947
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022112967977
Tiivistelmä
Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste