Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stability kernel in finite games with perturbed payoffs

Emelichev Vladimir; Nikulin Yury

Stability kernel in finite games with perturbed payoffs

Emelichev Vladimir
Nikulin Yury
Katso/Avaa
10.2478_candc-2022-0001.pdf (161.0Kb)
Lataukset: 

Systems Research Institute
doi:10.2478/candc-2022-0001
URI
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-656b784b-639f-4871-a2bb-5fc0c63c7ccc
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022121371235
Tiivistelmä

The parametric concept of equilibrium in a finite cooperative game of several players in a normal form is introduced. This concept is defined by the partitioning of a set of players into coalitions. Two extreme cases of such partitioning correspond to Pareto optimal and Nash equilibrium outcomes, respectively. The game is characterized by its matrix, in which each element is a subject for independent perturbations., ie a set of perturbing matrices is formed by a set of additive matrices, with two arbitrary Hölder norms specified independently in the outcome and criterion spaces. We undertake post-optimal analysis for the so-called stability kernel. The analytical expression for supreme levels of such perturbations is found. Numerical examples illustrate some of the pertinent cases.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste