Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cutting corners

Salo Ville

Cutting corners

Salo Ville
Katso/Avaa
1-s2.0-S0022000022000204-main.pdf (955.3Kb)
Lataukset: 

Academic Press
doi:10.1016/j.jcss.2022.03.001
URI
https://doi.org/10.1016/j.jcss.2022.03.001
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202301061709
Tiivistelmä

We define a class of subshifts defined by a family of allowed patterns of the same shape where, for any contents of the shape minus a corner, the number of ways to fill in the corner is the same. For such a subshift, a locally legal pattern of convex shape is globally legal, and there is a measure that samples uniformly on convex sets. We show by example that these subshifts need not admit a group structure by shift-commuting continuous operations. Our approach to convexity is axiomatic, and only requires an abstract convex geometry that is “midpointed with respect to the shape”. We construct such convex geometries on several groups, in particular strongly polycyclic groups and free groups. We also show some other methods for sampling finite patterns, and show a link to conjectures of Gottshalk and Kaplansky.

Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste