Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing Trustworthy AI in times of COVID-19: Deep Learning for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients

Himanshi Allahabadi; Julia Amann; Isabelle Balot; Andrea Beretta; Charles Binkley; Jonas Bozenhard; Frédérick Bruneault; James Brusseau; Sema Candemir; Luca Alessandro Cappellini; Genevieve Fieux Castagnet; Subrata Chakraborty; Nicoleta Cherciu; Christina Cociancig; Megan Coffee; Irene Ek; Leonardo Espinosa-Leal; Davide Farina; Geneviève Fieux-Castagnet; Thomas Frauenfelder; Alessio Gallucci; Guya Giuliani; Adam Golda; Irmhild van Halem; Elisabeth Hildt; Sune Holm; Georgios Kararigas; Sebastien A. Krier; Ulrich Kühne; Francesca Lizzi; Vince I. Madai; Aniek F. Markus; Serg Masis; Emilie Wiinblad Mathez; Francesco Mureddu; Emanuele Neri; Walter Osika; Matiss Ozols; Cecilia Panigutti; Brendan Parent; Francesca Pratesi; Pedro A. Moreno-Sánchez; Giovanni Sartor; Mattia Savardi; Alberto Signoroni; Hanna Sormunen; Andy Spezzatti; Adarsh Srivastava; Annette F. Stephansen; Lau Bee Theng; Jesmin Jahan Tithi; Jarno Tuominen; Steven Umbrello; Filippo Vaccher; Dennis Vetter; Magnus Westerlund; Renee Wurth; Roberto V. Zicari

Assessing Trustworthy AI in times of COVID-19: Deep Learning for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients

Himanshi Allahabadi
Julia Amann
Isabelle Balot
Andrea Beretta
Charles Binkley
Jonas Bozenhard
Frédérick Bruneault
James Brusseau
Sema Candemir
Luca Alessandro Cappellini
Genevieve Fieux Castagnet
Subrata Chakraborty
Nicoleta Cherciu
Christina Cociancig
Megan Coffee
Irene Ek
Leonardo Espinosa-Leal
Davide Farina
Geneviève Fieux-Castagnet
Thomas Frauenfelder
Alessio Gallucci
Guya Giuliani
Adam Golda
Irmhild van Halem
Elisabeth Hildt
Sune Holm
Georgios Kararigas
Sebastien A. Krier
Ulrich Kühne
Francesca Lizzi
Vince I. Madai
Aniek F. Markus
Serg Masis
Emilie Wiinblad Mathez
Francesco Mureddu
Emanuele Neri
Walter Osika
Matiss Ozols
Cecilia Panigutti
Brendan Parent
Francesca Pratesi
Pedro A. Moreno-Sánchez
Giovanni Sartor
Mattia Savardi
Alberto Signoroni
Hanna Sormunen
Andy Spezzatti
Adarsh Srivastava
Annette F. Stephansen
Lau Bee Theng
Jesmin Jahan Tithi
Jarno Tuominen
Steven Umbrello
Filippo Vaccher
Dennis Vetter
Magnus Westerlund
Renee Wurth
Roberto V. Zicari
Katso/Avaa
Assessing_Trustworthy_AI_in_times_of_COVID-19._Deep_Learning_for_predicting_a_multi-regional_score_conveying_the_degree_of_lung_compromise_in_COVID-19_patients(5).pdf (855.3Kb)
Lataukset: 

IEEE
doi:10.1109/TTS.2022.3195114
URI
https://ieeexplore.ieee.org/document/9845195
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2022102463093
Tiivistelmä

Abstract—The paper's main contributions are twofold: to demonstrate how to apply the general European Union’s High-Level Expert Group’s (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare; and to investigate the research question of what does “trustworthy AI” mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient’s lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia (Italy) since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses socio-technical scenarios to identify ethical, technical and domain-specific issues in the use of the AI system in the context of the pandemic.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste