Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit)
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Material Property Prediction with Transformers

Piran, Parisa (2024-12-10)

Material Property Prediction with Transformers

Piran, Parisa
(10.12.2024)
Katso/Avaa
Piran_Parisa_Thesis.pdf (1.923Mb)
Lataukset: 

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
avoin
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe20241219105800
Tiivistelmä
The Transformer neural network architecture has had a profound impact on the state of the art in machine learning in numerous disciplines, well beyond its origins in Natural Language Processing. Nevertheless, the application of Transformer models to the material field remains a relatively underexplored avenue. Therefore, we evaluated the Transformer model's capability in utilizing Many-Body Tensor Representation (MBTR) method in prediction of materials’ Highest Occupied Molecular Orbital (HOMO) energy. The dataset selected for this investigation was QM9, a popular dataset that enabled us to conduct comparative analyses of our model’s efficacy against a broad spectrum of prior studies.
In this study, we pursued two principal approaches. Initially, we evaluated the performance of the original MBTR representation and the Transformer on the dataset, implementing only minimal modifications to both the model and the representation. Subsequently, we explored a refined MBTR variant, more suitable for the variable sequence length input of the model, which encompasses the distances between atom pairs within a molecule, alongside a reconfigured Transformer designed to integrate encoded chemical symbols of atom pairs as inputs and utilize their distances for positional embeddings. Using the two approaches, we reached the MAE of 0.123 and 0.071, respectively. We find that the Transformer model, designed to process sequential input, is capable of learning to predict from molecular representations of variable length. It outperforms the most effective kernel-based methodologies and is comparable to other recently studied deep neural networks. In conclusion, we illustrate that, with only slight adaptations, Transformers are able to make comparably accurate predictions of materials’ properties.
Kokoelmat
  • Pro gradu -tutkielmat ja diplomityöt sekä syventävien opintojen opinnäytetyöt (kokotekstit) [9162]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste