Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A community challenge to predict clinical outcomes after immune checkpoint blockade in non-small cell lung cancer

Mason Mike; Lapuente-Santana Óscar; Halkola Anni S.; Wang Wenyu; Mall Raghvendra; Xiao Xu; Kaufman Jacob; Fu Jingxin; Pfeil Jacob; Banerjee Jineta; Chung Verena; Chang Han; Chasalow Scott D.; Lin Hung Ying; Chai Rongrong; Yu Thomas; Finotello Francesca; Mirtti Tuomas; Mäyränpää Mikko I.; Bao Jie; Verschuren Emmy W.; Ahmed Eiman I.; Ceccarelli Michele; Miller Lance D.; Monaco Gianni; Hendrickx Wouter R. L.; Sherif Shimaa; Yang Lin; Tang Ming; Gu Shengqing Stan; Zhang Wubing; Zhang Yi; Zeng Zexian; Das Sahu Avinash; Liu Yang; Yang Wenxian; Bedognetti Davide; Tang Jing; Eduati Federica; Laajala Teemu D.; Geese William J.; Guinney Justin; Szustakowski Joseph D.; Vincent Benjamin G.; Carbone David P.

A community challenge to predict clinical outcomes after immune checkpoint blockade in non-small cell lung cancer

Mason Mike
Lapuente-Santana Óscar
Halkola Anni S.
Wang Wenyu
Mall Raghvendra
Xiao Xu
Kaufman Jacob
Fu Jingxin
Pfeil Jacob
Banerjee Jineta
Chung Verena
Chang Han
Chasalow Scott D.
Lin Hung Ying
Chai Rongrong
Yu Thomas
Finotello Francesca
Mirtti Tuomas
Mäyränpää Mikko I.
Bao Jie
Verschuren Emmy W.
Ahmed Eiman I.
Ceccarelli Michele
Miller Lance D.
Monaco Gianni
Hendrickx Wouter R. L.
Sherif Shimaa
Yang Lin
Tang Ming
Gu Shengqing Stan
Zhang Wubing
Zhang Yi
Zeng Zexian
Das Sahu Avinash
Liu Yang
Yang Wenxian
Bedognetti Davide
Tang Jing
Eduati Federica
Laajala Teemu D.
Geese William J.
Guinney Justin
Szustakowski Joseph D.
Vincent Benjamin G.
Carbone David P.
Katso/Avaa
s12967-023-04705-3.pdf (1.754Mb)
Lataukset: 

BioMed Central
doi:10.1186/s12967-023-04705-3
URI
https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04705-3
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082789039
Tiivistelmä

Background 

Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti–PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC.

Methods

Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials.

Results

A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression–based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1.

Conclusions 

This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy.

Trial registration

​​​​​​​CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste