Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generating Synthetic Mechanocardiograms for Machine Learning Based Peak Detection

Sandelin, Jonas; Elnaggar, Ismail; Lahdenoja, Olli; Kaisti, Matti; Koivisto, Tero

Generating Synthetic Mechanocardiograms for Machine Learning Based Peak Detection

Sandelin, Jonas
Elnaggar, Ismail
Lahdenoja, Olli
Kaisti, Matti
Koivisto, Tero
Katso/Avaa
10636219.pdf (20.77Mb)
Lataukset: 

IEEE
doi:10.1109/LSENS.2024.3443526
URI
https://ieeexplore.ieee.org/document/10636219
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082784971
Tiivistelmä
Acquiring labeled data for machine learning algorithms in healthcare is expensive due to the laborious expert annotation and privacy concerns. This challenge is further complicated in the case of Mechanocardiogram (MCG) data, which are characterized by high inter- and intrapersonal complexity, compounded further by sensor variability. In this paper, we introduce an innovative method for generating synthetic mechanocardiogram (MCG) signals to address the scarcity of labeled data necessary for training machine learning models in healthcare. Our approach involves generating RR-intervals, adding wavelets, and incorporating noise to create realistic synthetic MCG signals. These synthetic signals were used to train a convolutional neural network (CNN) for peak detection in real MCG data. Our key contributions include developing a detailed methodology for realistic synthetic MCG signal generation, reducing the mean absolute error (MAE) in peak detection by 4.88 beats per minute (BPM) using synthetic data, enhancing the training of machine learning models, creating a new peak detection method, and addressing data scarcity in biomedical signal processing. These contributions emphasize the methodological innovations and the significance of our results, underscoring the potential impact of synthetic data in improving healthcare diagnostics.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste