Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning Enables Automatic Detection of Joint Damage Progression in Rheumatoid Arthritis-Model Development and External Validation

Venäläinen, Mikko S.; Biehl, Alexander; Holstila, Milja; Kuusalo, Laura; Elo, Laura L.

Deep Learning Enables Automatic Detection of Joint Damage Progression in Rheumatoid Arthritis-Model Development and External Validation

Venäläinen, Mikko S.
Biehl, Alexander
Holstila, Milja
Kuusalo, Laura
Elo, Laura L.
Katso/Avaa
keae215.pdf (4.695Mb)
Lataukset: 

Oxford University Press
doi:10.1093/rheumatology/keae215
URI
https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keae215/7643527
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082789122
Tiivistelmä

Objectives: Although deep learning has demonstrated substantial potential in automatic quantification of joint damage in rheumatoid arthritis (RA), evidence for detecting longitudinal changes at an individual patient level is lacking. Here, we introduce and externally validate our automated RA scoring algorithm (AuRA), and demonstrate its utility for monitoring radiographic progression in a real-world setting.

Methods: The algorithm, originally developed during the Rheumatoid Arthritis 2-Dialogue for Reverse Engineering Assessment and Methods (RA2-DREAM) challenge, was trained to predict expert-curated Sharp-van der Heijde total scores in hand and foot radiographs from two previous clinical studies (n = 367). We externally validated AuRA against data (n = 205) from Turku University Hospital and compared the performance against two top-performing RA2-DREAM solutions. Finally, for 54 patients, we extracted additional radiograph sets from another control visit to the clinic (average time interval of 4.6 years).

Results: In the external validation cohort, with a root-mean-square-error (RMSE) of 23.6, AuRA outperformed both top-performing RA2-DREAM algorithms (RMSEs 35.0 and 35.6). The improved performance was explained mostly by lower errors at higher expert-assessed scores. The longitudinal changes predicted by our algorithm were significantly correlated with changes in expert-assessed scores (Pearson's R = 0.74, p< 0.001).

Conclusion: AuRA had the best external validation performance and demonstrated potential for detecting longitudinal changes in joint damage. Available in https://hub.docker.com/r/elolab/aura, our algorithm can easily be applied for automatic detection of radiographic progression in the future, reducing the need for laborious manual scoring.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste