Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing Synthetic Controls Using Bilevel Optimization

Malo Pekka; Eskelinen Juha; Zhou Xun; Kuosmanen Timo

Computing Synthetic Controls Using Bilevel Optimization

Malo Pekka
Eskelinen Juha
Zhou Xun
Kuosmanen Timo
Katso/Avaa
KuosmanenEtAl2023ComputingSyntheticControls.pdf (1.758Mb)
Lataukset: 

Springer
doi:10.1007/s10614-023-10471-7
URI
https://link.springer.com/article/10.1007/s10614-023-10471-7
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082789536
Tiivistelmä
The synthetic control method (SCM) represents a notable innovation in estimating the causal effects of policy interventions and programs in a comparative case study setting. In this paper, we demonstrate that the data-driven approach to SCM requires solving a bilevel optimization problem. We show how the original SCM problem can be solved to the global optimum through the introduction of an iterative algorithm rooted in Tykhonov regularization or Karush-Kuhn-Tucker approximations.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste