Computing Synthetic Controls Using Bilevel Optimization
Malo Pekka; Eskelinen Juha; Zhou Xun; Kuosmanen Timo
Computing Synthetic Controls Using Bilevel Optimization
Malo Pekka
Eskelinen Juha
Zhou Xun
Kuosmanen Timo
Springer
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082789536
https://urn.fi/URN:NBN:fi-fe2025082789536
Tiivistelmä
The synthetic control method (SCM) represents a notable innovation in estimating the causal effects of policy interventions and programs in a comparative case study setting. In this paper, we demonstrate that the data-driven approach to SCM requires solving a bilevel optimization problem. We show how the original SCM problem can be solved to the global optimum through the introduction of an iterative algorithm rooted in Tykhonov regularization or Karush-Kuhn-Tucker approximations.
Kokoelmat
- Rinnakkaistallenteet [27094]