Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

In search of founding era registers: automatic modeling of registers from the corpus of Founding Era American English

Repo Liina; Hashimoto Brett; Laippala Veronika

In search of founding era registers: automatic modeling of registers from the corpus of Founding Era American English

Repo Liina
Hashimoto Brett
Laippala Veronika
Katso/Avaa
fqad049.pdf (652.1Kb)
Lataukset: 

doi:10.1093/llc/fqad049
URI
https://doi.org/10.1093/llc/fqad049
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082789608
Tiivistelmä

Registers are situationally defined text varieties, such as letters, essays, or news articles, that are considered to be one of the most important predictors of linguistic variation. Often historical databases of language lack register information, which could greatly enhance their usability (e.g. Early English Books Online). This article examines register variation in Late Modern English and automatic register identification in historical corpora. We model register variation in the corpus of Founding Era American English (COFEA) and develop machine-learning methods for automatic register identification in COFEA. We also extract and analyze the most significant grammatical characteristics estimated by the classifier for the best-predicted registers and found that letters and journals in the 1700s were characterized by informational density. The chosen method enables us to learn more about registers in the Founding Era. We show that some registers can be reliably identified from COFEA, the best overall performance achieved by the deep learning model Bidirectional Encoder Representations from Transformers with an F1-score of 97 per cent. This suggests that deep learning models could be utilized in other studies concerned with historical language and its automatic classification.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste