Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Delirium Identification from Nursing Reports Using Large Language Models

Graf, Lisa; Ritzi, Alexander; Schöler, Lili M.

Delirium Identification from Nursing Reports Using Large Language Models

Graf, Lisa
Ritzi, Alexander
Schöler, Lili M.
Katso/Avaa
SHTI-327-SHTI250492(1).pdf (146.7Kb)
Lataukset: 

doi:10.3233/SHTI250492
URI
https://doi.org/10.3233/shti250492
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082789633
Tiivistelmä

This study investigates large language models for delirium detection from nursing reports, comparing keyword matching, prompting, and finetuning. Using a manually labelled dataset from the University Hospital Freiburg, Germany, we tested Llama3 and Phi3 models. Both prompting and finetuning were effective, with finetuning Phi3 (3.8B) achieving the highest accuracy (90.24%) and AUROC (96.07%), significantly outperforming other methods.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste