Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Derivation and validation of an artificial intelligence-based plaque burden safety cut-off for long-term acute coronary syndrome from coronary computed tomography angiography

Bar, Sarah; Knuuti, Juhani; Saraste, Antti; Klen, Riku; Kero, Tanja; Nabeta, Takeru; Bax, Jeroen J.; Danad, Ibrahim; Nurmohamed, Nick S.; Jukema, Ruurt A.; Knaapen, Paul; Maaniitty, Teemu

Derivation and validation of an artificial intelligence-based plaque burden safety cut-off for long-term acute coronary syndrome from coronary computed tomography angiography

Bar, Sarah
Knuuti, Juhani
Saraste, Antti
Klen, Riku
Kero, Tanja
Nabeta, Takeru
Bax, Jeroen J.
Danad, Ibrahim
Nurmohamed, Nick S.
Jukema, Ruurt A.
Knaapen, Paul
Maaniitty, Teemu
Katso/Avaa
jeaf121.pdf (748.8Kb)
Lataukset: 

OXFORD UNIV PRESS
doi:10.1093/ehjci/jeaf121
URI
https://doi.org/10.1093/ehjci/jeaf121
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082785769
Tiivistelmä

Aims
Artificial intelligence (AI) has enabled accurate and fast plaque quantification from coronary computed tomography angiography (CCTA). However, AI detects any coronary plaque in up to 97% of patients. To avoid overdiagnosis, a plaque burden safety cut-off for future coronary events is needed.

Methods and results
Percent atheroma volume (PAV) was quantified with AI-guided quantitative computed tomography in a blinded fashion. Safety cut-off derivation was performed in the Turku CCTA registry (Finland), and pre-defined as ≥90% sensitivity for acute coronary syndrome (ACS). External validation was performed in the Amsterdam CCTA registry (the Netherlands). In the derivation cohort, 100/2271 (4.4%) patients experienced ACS (median follow-up 6.9 years). A threshold of PAV ≥ 2.6% was derived with 90.0% sensitivity and negative predictive value (NPV) of 99.0%. In the validation cohort 27/568 (4.8%) experienced ACS (median follow-up 6.7 years) with PAV ≥ 2.6% showing 92.6% sensitivity and 99.0% NPV for ACS. In the derivation cohort, 45.2% of patients had PAV < 2.6 vs. 4.3% with PAV 0% (no plaque) (P < 0.001) (validation cohort: 34.3% PAV < 2.6 vs. 2.6% PAV 0%; P < 0.001). Patients with PAV ≥ 2.6% had higher adjusted ACS rates in the derivation [Hazard ratio (HR) 4.65, 95% confidence interval (CI) 2.33–9.28, P < 0.001] and validation cohort (HR 7.31, 95% CI 1.62–33.08, P = 0.010), respectively.

Conclusion
This study suggests that PAV up to 2.6% quantified by AI is associated with low-ACS risk in two independent patient cohorts. This cut-off may be helpful for clinical application of AI-guided CCTA analysis, which detects any plaque in up to 96–97% of patients.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste