Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncovering the complex genetic architecture of human plasma lipidome using machine learning methods

Lehtimäki Miikael; Mishra Binisha H.; Del-Val Coral; Lyytikäinen Leo-Pekka; Kähönen Mika; Cloninger C. Robert; Raitakari Olli T.; Laaksonen Reijo; Zwir Igor; Lehtimäki Terho; Mishra Pashupati P.

Uncovering the complex genetic architecture of human plasma lipidome using machine learning methods

Lehtimäki Miikael
Mishra Binisha H.
Del-Val Coral
Lyytikäinen Leo-Pekka
Kähönen Mika
Cloninger C. Robert
Raitakari Olli T.
Laaksonen Reijo
Zwir Igor
Lehtimäki Terho
Mishra Pashupati P.
Katso/Avaa
s41598-023-30168-z.pdf (1.893Mb)
Lataukset: 

Nature Research
doi:10.1038/s41598-023-30168-z
URI
https://doi.org/10.1038/s41598-023-30168-z
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2023040535100
Tiivistelmä

Genetic architecture of plasma lipidome provides insights into regulation of lipid metabolism and related diseases. We applied an unsupervised machine learning method, PGMRA, to discover phenotype-genotype many-to-many relations between genotype and plasma lipidome (phenotype) in order to identify the genetic architecture of plasma lipidome profiled from 1,426 Finnish individuals aged 30–45 years. PGMRA involves biclustering genotype and lipidome data independently followed by their inter-domain integration based on hypergeometric tests of the number of shared individuals. Pathway enrichment analysis was performed on the SNP sets to identify their associated biological processes. We identified 93 statistically significant (hypergeometric p-value < 0.01) lipidome-genotype relations. Genotype biclusters in these 93 relations contained 5977 SNPs across 3164 genes. Twenty nine of the 93 relations contained genotype biclusters with more than 50% unique SNPs and participants, thus representing most distinct subgroups. We identified 30 significantly enriched biological processes among the SNPs involved in 21 of these 29 most distinct genotype-lipidome subgroups through which the identified genetic variants can influence and regulate plasma lipid related metabolism and profiles. This study identified 29 distinct genotype-lipidome subgroups in the studied Finnish population that may have distinct disease trajectories and therefore could be useful in precision medicine research.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste